Geochemical subsoil data obtained from China and European laboratories have been compared in this study. 787 C horizon subsoil samples from FOREGS (Forum of European Geological Surveys) geochemical baselines mapping...Geochemical subsoil data obtained from China and European laboratories have been compared in this study. 787 C horizon subsoil samples from FOREGS (Forum of European Geological Surveys) geochemical baselines mapping project were sent to China's IGGE (Institute of Geophysical and Geochemical Exploration) laboratory and composited to 190 samples according to the 160 kin x 160 km GNT (Global Terrestrial Network) cells. In addition to the FOREGS elemental analysis package, Au, Pt, Pd, B, Ge, Br, CI, Se, N, Li and F were also analyzed by using the IGGE's 76 element analytical scheme. Geochemical data statistics, scatter plotting, and geochemical map compilation tech- niques have been employed to investigate differences between FOREGS and IGGE analytical results. The results of two datasets, the IGGE's analysis data for composited samples, and the FOREGS average data of samples in each GNT cell, agree extremely well lor about 23 elements, viz: SiO2, St, Al2O3, Zr, Ba, Fe2O3, Ti, Rb, Mn, Gd, CaO, Ga, MgO, P, Pb, Na2O, Y, Th, As, U Sc, Cr, and Co. There are slight differences between-laboratory biases shown as proportional errors between the datasets for Ni, K2O, Tb, Tl, Cu, S, Sin, La, Ce, Pr, Nd, Eu, Ho, Er, Tin, Yb, Lu, Ta, Nb, HE and Dy. For Cd, Cs, Be, Sb, In, Mo, I, Sn, and Te, the correlation of the two datasets and the similarity of the geochemical maps are fairly good, but obvious biases exist between the two datasets at values near detection limits.展开更多
The development of geochemical mapping progressed from local geochemical prospecting through regional geochemical exploration and regional geochemical mapping to national and global geochemical mapping. This paper dis...The development of geochemical mapping progressed from local geochemical prospecting through regional geochemical exploration and regional geochemical mapping to national and global geochemical mapping. This paper discusses the evolution of aims, ideas and methodology of geochemical mapping in Western countries, Russia and China. The sophistication of geochemical mapping methodology will make great contributions to solving resources and environmental problems in the 21^st century.展开更多
基金given to the Ministry of Land and Resources and the Ministry of Science and Technology for the research funding of the projects: SinoProbe 04 and 863 Project 2007AA06Z133
文摘Geochemical subsoil data obtained from China and European laboratories have been compared in this study. 787 C horizon subsoil samples from FOREGS (Forum of European Geological Surveys) geochemical baselines mapping project were sent to China's IGGE (Institute of Geophysical and Geochemical Exploration) laboratory and composited to 190 samples according to the 160 kin x 160 km GNT (Global Terrestrial Network) cells. In addition to the FOREGS elemental analysis package, Au, Pt, Pd, B, Ge, Br, CI, Se, N, Li and F were also analyzed by using the IGGE's 76 element analytical scheme. Geochemical data statistics, scatter plotting, and geochemical map compilation tech- niques have been employed to investigate differences between FOREGS and IGGE analytical results. The results of two datasets, the IGGE's analysis data for composited samples, and the FOREGS average data of samples in each GNT cell, agree extremely well lor about 23 elements, viz: SiO2, St, Al2O3, Zr, Ba, Fe2O3, Ti, Rb, Mn, Gd, CaO, Ga, MgO, P, Pb, Na2O, Y, Th, As, U Sc, Cr, and Co. There are slight differences between-laboratory biases shown as proportional errors between the datasets for Ni, K2O, Tb, Tl, Cu, S, Sin, La, Ce, Pr, Nd, Eu, Ho, Er, Tin, Yb, Lu, Ta, Nb, HE and Dy. For Cd, Cs, Be, Sb, In, Mo, I, Sn, and Te, the correlation of the two datasets and the similarity of the geochemical maps are fairly good, but obvious biases exist between the two datasets at values near detection limits.
文摘The development of geochemical mapping progressed from local geochemical prospecting through regional geochemical exploration and regional geochemical mapping to national and global geochemical mapping. This paper discusses the evolution of aims, ideas and methodology of geochemical mapping in Western countries, Russia and China. The sophistication of geochemical mapping methodology will make great contributions to solving resources and environmental problems in the 21^st century.