A number of electron-rich heterocycles are studied as potential reagents for visual colorimetric detection of FOX-7 due to colored charge-transfer complexes formation.The obtained results suggest that pyrrole and pyri...A number of electron-rich heterocycles are studied as potential reagents for visual colorimetric detection of FOX-7 due to colored charge-transfer complexes formation.The obtained results suggest that pyrrole and pyrimidine derivatives can form such complexes playing the role of electron donors despite a low electrophilicity of FOX-7.Density functional theory calculations,as well as quantum theory of atoms in molecules analysis,suggest stacking binding mode as the most preferable one with the binding energy of about 21-36 kJ/mol.All the complexes demonstrate a clear single charge-transfer absorption band in the visible region and the expected colors of the complexes are varying from violet and blue to red and orange.The calculations of the crystalline state of the studied complexes indicate high lattice energies,which are higher than that of pure FOX-7 and are close to the recently reported hydrogen-bonded complex of FOX-7 with 1,10-phenanthroline.Additional analysis of the studied charge-transfer complexes using properties based on density difference grids clearly suggests the acceptor role of FOX-7 in the complexes.This analysis can be effectively applied to identify the nature of other possible complexes of FOX-7,in which its role is unclear because of the specific reactivity,namely,both weak electrophilic and nucleophilic properties at the same time.展开更多
基金supported by the Ministry of Education and Science of Ukraine(No.0122U000760)。
文摘A number of electron-rich heterocycles are studied as potential reagents for visual colorimetric detection of FOX-7 due to colored charge-transfer complexes formation.The obtained results suggest that pyrrole and pyrimidine derivatives can form such complexes playing the role of electron donors despite a low electrophilicity of FOX-7.Density functional theory calculations,as well as quantum theory of atoms in molecules analysis,suggest stacking binding mode as the most preferable one with the binding energy of about 21-36 kJ/mol.All the complexes demonstrate a clear single charge-transfer absorption band in the visible region and the expected colors of the complexes are varying from violet and blue to red and orange.The calculations of the crystalline state of the studied complexes indicate high lattice energies,which are higher than that of pure FOX-7 and are close to the recently reported hydrogen-bonded complex of FOX-7 with 1,10-phenanthroline.Additional analysis of the studied charge-transfer complexes using properties based on density difference grids clearly suggests the acceptor role of FOX-7 in the complexes.This analysis can be effectively applied to identify the nature of other possible complexes of FOX-7,in which its role is unclear because of the specific reactivity,namely,both weak electrophilic and nucleophilic properties at the same time.
基金National Natural Science Foundation of China(21241003 and 20803058)Postdoctoral Science Foundation of Shaanxi Province and Education Committee Foundation of Shaanxi Province(2013JK0697)
文摘制备了1-氨基-1-乙氨基-2,2-二硝基乙烯(AEFOX-7)水合物的单晶并测定了其结构,该晶体属于立方晶系,空间群是Pna2(1)/m,晶体参数为:a=1.3692(3)nm,b=0.71240(16)nm,c=0.9024(2)nm,β=90°,V=0.8802(4)nm^3,Z=4,μ=0.133 mm^(-1),F(000)=408,D_c=1.465 g·cm^3,R_1=0.0306 and wR_2=0.0855。测定了AEFOX-7、1-氨基-1-甲氨基-2,2-二硝基乙烯(AMFOX-7)和1,1-二氨基-2,2-二硝基乙烯(FOX-7)的燃烧焓,相应的标准摩尔燃烧焓分别是:-(2347.83±4.84),-(1819.96±5.94)kJ·mol^(-1)和-(1159.77±1.30)kJ·mol^(-1)。