A simplified procedure was described to estimate the FEL of three kinds of hot-mix asphalt concrete (HMAC) without doing any fatigue tests. The procedure required two fundamental properties of HMAC, tensile strength...A simplified procedure was described to estimate the FEL of three kinds of hot-mix asphalt concrete (HMAC) without doing any fatigue tests. The procedure required two fundamental properties of HMAC, tensile strength under different temperatures and strain rates, and flexural stiffness under different stain levels. This information can reliably be obtained in simple tests, which are the monotonic uniaxial tensile test (MUTT) and the four-point bending test (FPBT). A new parameter, the initial stress ratio Rinitial, was introduced to connect these two tests, which was defined as the ratio of applied initial stress and tensile strength of the specimen. At last the FEL can be expressed as a function of the initial flexural stiffness, frequency and temperature. Obviously, this procedure has the potential to be very useful in view of long-life pavement design and time consuming traditional fatigue tests.展开更多
The demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is eno...The demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is enormous.The photoactive layer,i.e.,the perovskite thin film,as a critical component of flexible perovskite solar cells(F-PSCs),still faces long-term stability issues when deformation occurs due to encountering temperature changes that also affect intrinsic rigidity.This literature investigation summarizes the main factors responsible for the rapid destruction of F-PSCs.We focus on long-term mechanical stability of F-PSCs together with the recent research protocols for improving this performance.Furthermore,we specify the progress in F-PSCs concerning precise design strategies of the functional layer to enhance the flexural endurance of perovskite films,such as internal stress engineering,grain boundary modification,self-healing strategy,and crystallization regulation.The existing challenges of oxygen-moisture stability and advanced encapsulation technologies of F-PSCs are also discussed.As concluding remarks,we propose our viewpoints on the large-scale commercial application of F-PSCs.展开更多
文摘A simplified procedure was described to estimate the FEL of three kinds of hot-mix asphalt concrete (HMAC) without doing any fatigue tests. The procedure required two fundamental properties of HMAC, tensile strength under different temperatures and strain rates, and flexural stiffness under different stain levels. This information can reliably be obtained in simple tests, which are the monotonic uniaxial tensile test (MUTT) and the four-point bending test (FPBT). A new parameter, the initial stress ratio Rinitial, was introduced to connect these two tests, which was defined as the ratio of applied initial stress and tensile strength of the specimen. At last the FEL can be expressed as a function of the initial flexural stiffness, frequency and temperature. Obviously, this procedure has the potential to be very useful in view of long-life pavement design and time consuming traditional fatigue tests.
基金supported by the National Key Research and Development Program of China(2022YFB4200052)the National Natural Science Foundation of China(No.21975088)+2 种基金the Department of Science and Technology of Hubei Province(2022EHB009)the China Postdoctoral Science Foundation(2022M711236)S.A.thanks European Research Council(MOLEMAT-726360)for support.
文摘The demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is enormous.The photoactive layer,i.e.,the perovskite thin film,as a critical component of flexible perovskite solar cells(F-PSCs),still faces long-term stability issues when deformation occurs due to encountering temperature changes that also affect intrinsic rigidity.This literature investigation summarizes the main factors responsible for the rapid destruction of F-PSCs.We focus on long-term mechanical stability of F-PSCs together with the recent research protocols for improving this performance.Furthermore,we specify the progress in F-PSCs concerning precise design strategies of the functional layer to enhance the flexural endurance of perovskite films,such as internal stress engineering,grain boundary modification,self-healing strategy,and crystallization regulation.The existing challenges of oxygen-moisture stability and advanced encapsulation technologies of F-PSCs are also discussed.As concluding remarks,we propose our viewpoints on the large-scale commercial application of F-PSCs.