This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this nee...This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.展开更多
Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achie...Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.展开更多
This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA an...This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing展开更多
The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is present...The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.展开更多
A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-B...A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.展开更多
Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile r...Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads.展开更多
To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS3...To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS320C80 architecture's high degree of on chip integration and software flexibility will make it widely used in image processing that requires high processing speeds.展开更多
The concept and advantage of reconfigurable technology is introduced. A kind of processor architecture of re configurable macro processor (RMP) model based on FPGA array and DSP is put forward and has been implemented...The concept and advantage of reconfigurable technology is introduced. A kind of processor architecture of re configurable macro processor (RMP) model based on FPGA array and DSP is put forward and has been implemented. Two image algorithms are developed: template-based automatic target recognition and zone labeling. One is estimating for motion direction in the infrared image background, another is line picking-up algorithm based on image zone labeling and phase grouping technique. It is a kind of 'hardware' function that can be called by the DSP in high-level algorithm. It is also a kind of hardware algorithm of the DSP. The results of experiments show the reconfigurable computing technology based on RMP is an ideal accelerating means to deal with the high-speed image processing tasks. High real time performance is obtained in our two applications on RMP.展开更多
To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the str...To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the strip surface,the design of parallel image processing system and the methods of algorithm implementation have been studied. By using field programmable gate array(FPGA) as hardware platform of implementation and considering the characteristic of detection system on the strip surface,a parallel image processing system implemented by using multi IP kernel is designed. According to different computing tasks and the load balancing capability of parallel processing system,the system could set different calculating numbers of nodes to meet the system's demand and save the hardware cost.展开更多
Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bi...Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bimsoils because of the heterogeneity,chaotic structure,and lithological variability.As a result,only very limited laboratory studies have been reported on the evolution of their internal deformation.In this study,the deformation evolution of bimsoils under uniaxial loading is investigated using real-time X-ray computed tomography(CT)and image correlation algorithm(with a rock block percentage(RBP)of 40%).Three parameters,i.e.heterogeneity coefficient(K),correlation coefficient(CC),and standard deviation(STD)of displacement fields,are proposed to quantify the heterogeneity of the motion of the rock blocks and the progressive deformation of the bimsoils.Experimental results show that the rock blocks in bimsoils are prone to forming clusters with increasing loading,and the sliding surface goes around only one side of a cluster.Based on the movement of the rock blocks recorded by STD and CC,the progressive deformation of the bimsoils is quantitatively divided into three stages:initialization of the rotation of rock blocks,formation of rock block clusters,and formation of a shear band by rock blocks with significant rotation.Moreover,the experimental results demonstrate that the meso-motion of rock blocks controls the macroscopic mechanical properties of the samples.展开更多
文摘This paper analyzes the current difficulties encountered in on-line inspection systems of strip surface quality, specifically relating to problems with real-time processing of huge amounts of data. To address this need, this paper describes an FPGA-based high-speed image processing module with both hardware and software aspects. Improving these two aspects together will help the system achieve real-time processing of massive image data, and simplifies the architecture of the strip surface quality on-line inspection system.
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natual Science Foundation of Shanxi Province(No.2012021011-2)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20121420110006)Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,ChinaProject Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘Real-time detection for object size has now become a hot topic in the testing field and image processing is the core algorithm. This paper focuses on the processing and display of the collected dynamic images to achieve a real-time image pro- cessing for the moving objects. Firstly, the median filtering, gain calibration, image segmentation, image binarization, cor- ner detection and edge fitting are employed to process the images of the moving objects to make the image close to the real object. Then, the processed images are simultaneously displayed on a real-time basis to make it easier to analyze, understand and identify them, and thus it reduces the computation complexity. Finally, human-computer interaction (HCI)-friendly in- terface based on VC ++ is designed to accomplish the digital logic transform, image processing and real-time display of the objects. The experiment shows that the proposed algorithm and software design have better real-time performance and accu- racy which can meet the industrial needs.
文摘This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing
基金This project was supported by the National Natural Science Foundation of China (60135020).
文摘The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.
基金This project was supported by the National Natural Science Foundation of China(60135020) National Key Pre-researchProject of China(413010701 -3) .
文摘A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.
基金The authors extend their appreciation to the Deanship of Scientific Research at Shaqra University for funding this research work through the Project Number(SU-ANN-2023016).
文摘Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads.
文摘To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS320C80 architecture's high degree of on chip integration and software flexibility will make it widely used in image processing that requires high processing speeds.
文摘The concept and advantage of reconfigurable technology is introduced. A kind of processor architecture of re configurable macro processor (RMP) model based on FPGA array and DSP is put forward and has been implemented. Two image algorithms are developed: template-based automatic target recognition and zone labeling. One is estimating for motion direction in the infrared image background, another is line picking-up algorithm based on image zone labeling and phase grouping technique. It is a kind of 'hardware' function that can be called by the DSP in high-level algorithm. It is also a kind of hardware algorithm of the DSP. The results of experiments show the reconfigurable computing technology based on RMP is an ideal accelerating means to deal with the high-speed image processing tasks. High real time performance is obtained in our two applications on RMP.
基金The 111 project(B07018) Supported by Program for Changjiang Scholars and Innovative Research Teamin University(IRT0423)
文摘To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the strip surface,the design of parallel image processing system and the methods of algorithm implementation have been studied. By using field programmable gate array(FPGA) as hardware platform of implementation and considering the characteristic of detection system on the strip surface,a parallel image processing system implemented by using multi IP kernel is designed. According to different computing tasks and the load balancing capability of parallel processing system,the system could set different calculating numbers of nodes to meet the system's demand and save the hardware cost.
文摘为了提高小目标识别和分类的实时性,同时降低识别系统的资源消耗,本文提出了一种简易、高效的现场可编程门阵列(Field Programmable Gate Array,FPGA)小目标识别分类系统。该系统首先通过图像预处理消除图像噪点,并采用并行计算提升系统实时性。然后将处理后的图像与模板进行匹配计算得到识别结果,设计的模板匹配电路具有较小的硬件复杂度和较快的处理速度。实验结果表明,本文所提出的识别系统在680×480图像分辨下,可达137.5帧/s的处理速度,实时性强,同时仅消耗了9个块随机存储器(Block Random Access Memory,BRAM)和2个数字信号处理器(Digital Signal Processor,DSP),硬件资源消耗较少,在处理小目标识别和分类问题上有较好的实用价值。
基金This work was supported by the National Natural Science Foundation of China(Grants Nos.41972287 and 42090023)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904).
文摘Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bimsoils because of the heterogeneity,chaotic structure,and lithological variability.As a result,only very limited laboratory studies have been reported on the evolution of their internal deformation.In this study,the deformation evolution of bimsoils under uniaxial loading is investigated using real-time X-ray computed tomography(CT)and image correlation algorithm(with a rock block percentage(RBP)of 40%).Three parameters,i.e.heterogeneity coefficient(K),correlation coefficient(CC),and standard deviation(STD)of displacement fields,are proposed to quantify the heterogeneity of the motion of the rock blocks and the progressive deformation of the bimsoils.Experimental results show that the rock blocks in bimsoils are prone to forming clusters with increasing loading,and the sliding surface goes around only one side of a cluster.Based on the movement of the rock blocks recorded by STD and CC,the progressive deformation of the bimsoils is quantitatively divided into three stages:initialization of the rotation of rock blocks,formation of rock block clusters,and formation of a shear band by rock blocks with significant rotation.Moreover,the experimental results demonstrate that the meso-motion of rock blocks controls the macroscopic mechanical properties of the samples.