An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the conv...An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.展开更多
This paper proposes a kind of programmable logic element(PLE)based on Sense-Switch pFLASH technology.By programming Sense-Switch pFLASH,all three-bit look-up table(LUT3)functions,partial four-bit look-up table(LUT4)fu...This paper proposes a kind of programmable logic element(PLE)based on Sense-Switch pFLASH technology.By programming Sense-Switch pFLASH,all three-bit look-up table(LUT3)functions,partial four-bit look-up table(LUT4)functions,latch functions,and d flip flop(DFF)with enable and reset functions can be realized.Because PLE uses a choice of operational logic(COOL)approach for the operation of logic functions,it allows any logic circuit to be implemented at any ratio of combinatorial logic to register.This intrinsic property makes it close to the basic application specific integrated circuit(ASIC)cell in terms of fine granularity,thus allowing ASIC-like cell-based mappers to apply all their optimization potential.By measuring Sense-Switch pFLASH and PLE circuits,the results show that the“on”state driving current of the Sense-Switch pFLASH is about 245.52μA,and that the“off”state leakage current is about 0.1 pA.The programmable function of PLE works normally.The delay of the typical combinatorial logic operation AND3 is 0.69 ns,and the delay of the sequential logic operation DFF is 0.65 ns,both of which meet the requirements of the design technical index.展开更多
This brief proposes an area and speed efficient implementation of symmetric finite impulse response (FIR) digital filter using reduced parallel look-up table (LUT) distributed arithmetic (DA) based approach. The compl...This brief proposes an area and speed efficient implementation of symmetric finite impulse response (FIR) digital filter using reduced parallel look-up table (LUT) distributed arithmetic (DA) based approach. The complexity lying in the realization of FIR filter is dominated by the multiplier structure. This complexity grows further with filter order, which results in increased area, power, and reduced speed of operation. The speed of operation is improved over multiply-accumulate approach using multiplier less conventional DA based design and decomposed DA based design. Both the structure requires B clock cycles to get the filter output for the input width of B, which limits the speed of DA structure. This limitation is addressed using parallel LUTs, called high speed DA FIR, at the expense of additional hardware cost. With large number of taps, the number of LUTs and its size also becomes large. In the proposed method, by exploiting coefficient symmetry property, the number of LUTs in the decomposed DA form is reduced by a factor of about 2. This proposed approach is applied in high speed DA based FIR design, to obtain area and speed efficient structure. The proposed design offers around 40% less area and 53.98% less slice-delay product (SDP) than the high throughput DA based structure when it’s implemented over Xilinx Virtex-5 FPGA device-XC5VSX95T-1FF1136 for 16-tap symmetric FIR filter. The proposed design on the same FPGA device, supports up to 607 MHz input sampling frequency, and offers 60.5% more speed and 67.71% less SDP than the systolic DA based design.展开更多
文摘An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.
基金supported by the National Natural Science Foundation of China(No.62174150)the Natural Science Foundation of Jiangsu Province,China(Nos.BK20211040 and BK20211041)。
文摘This paper proposes a kind of programmable logic element(PLE)based on Sense-Switch pFLASH technology.By programming Sense-Switch pFLASH,all three-bit look-up table(LUT3)functions,partial four-bit look-up table(LUT4)functions,latch functions,and d flip flop(DFF)with enable and reset functions can be realized.Because PLE uses a choice of operational logic(COOL)approach for the operation of logic functions,it allows any logic circuit to be implemented at any ratio of combinatorial logic to register.This intrinsic property makes it close to the basic application specific integrated circuit(ASIC)cell in terms of fine granularity,thus allowing ASIC-like cell-based mappers to apply all their optimization potential.By measuring Sense-Switch pFLASH and PLE circuits,the results show that the“on”state driving current of the Sense-Switch pFLASH is about 245.52μA,and that the“off”state leakage current is about 0.1 pA.The programmable function of PLE works normally.The delay of the typical combinatorial logic operation AND3 is 0.69 ns,and the delay of the sequential logic operation DFF is 0.65 ns,both of which meet the requirements of the design technical index.
文摘This brief proposes an area and speed efficient implementation of symmetric finite impulse response (FIR) digital filter using reduced parallel look-up table (LUT) distributed arithmetic (DA) based approach. The complexity lying in the realization of FIR filter is dominated by the multiplier structure. This complexity grows further with filter order, which results in increased area, power, and reduced speed of operation. The speed of operation is improved over multiply-accumulate approach using multiplier less conventional DA based design and decomposed DA based design. Both the structure requires B clock cycles to get the filter output for the input width of B, which limits the speed of DA structure. This limitation is addressed using parallel LUTs, called high speed DA FIR, at the expense of additional hardware cost. With large number of taps, the number of LUTs and its size also becomes large. In the proposed method, by exploiting coefficient symmetry property, the number of LUTs in the decomposed DA form is reduced by a factor of about 2. This proposed approach is applied in high speed DA based FIR design, to obtain area and speed efficient structure. The proposed design offers around 40% less area and 53.98% less slice-delay product (SDP) than the high throughput DA based structure when it’s implemented over Xilinx Virtex-5 FPGA device-XC5VSX95T-1FF1136 for 16-tap symmetric FIR filter. The proposed design on the same FPGA device, supports up to 607 MHz input sampling frequency, and offers 60.5% more speed and 67.71% less SDP than the systolic DA based design.