Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solutio...Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solution if the macrostructure is large enough to comprise an infinite number of unit cells. In this paper, a novel implementation algorithm of asymptotic homogenization (NIAH) is developed to calculate the effective CTE of periodic composite materials. Compared with the previous implementation of AH, there are two obvious advantages. One is its implementation as simple as representative volume element (RVE). The new algorithm can be executed easily using commercial finite element analysis (FEA) software as a black box. The detailed process of the new implementation of AH has been provided. The other is that NIAH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the CTE of a complex structure. Several examples are carried out to demonstrate the effectiveness of the new implementation. This work is expected to greatly promote the widespread use of AH in predicting the CTE of periodic composite materials.展开更多
Diamond reinforced copper(Cu/diamond) composites were prepared by pressure infiltration for their application in thermal management where both high thermal conductivity and low coefficient of thermal expansion(CTE...Diamond reinforced copper(Cu/diamond) composites were prepared by pressure infiltration for their application in thermal management where both high thermal conductivity and low coefficient of thermal expansion(CTE) are important.They were characterized by the microstructure and thermal properties as a function of boron content,which is used for matrix-alloying to increase the interfacial bonding between the diamond and copper.The obtained composites show high thermal conductivity(660 W/(m·K)) and low CET(7.4×10-6 K-1) due to the formation of the B13C2 layer at the diamond-copper interface,which greatly strengthens the interfacial bonding.Thermal property measurements indicate that in the Cu-B/diamond composites,the thermal conductivity and the CTE show a different variation trend as a function of boron content,which is attributed to the thickness and distribution of the interfacial carbide layer.The CTE behavior of the present composites can be well described by Kerner's model,especially for the composites with 0.5wt% B.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11332004, 11572071)the Program for Changjiang Scholars and Innovative Research Team in Dalian University of Technology (PCSIRT)+2 种基金111 Project (Grant B14013)the CATIC Industrial Production Projects (Grant CXY2013DLLG32)the Fundamental Research Funds for the Central Universities (Grant DUT15ZD101)
文摘Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solution if the macrostructure is large enough to comprise an infinite number of unit cells. In this paper, a novel implementation algorithm of asymptotic homogenization (NIAH) is developed to calculate the effective CTE of periodic composite materials. Compared with the previous implementation of AH, there are two obvious advantages. One is its implementation as simple as representative volume element (RVE). The new algorithm can be executed easily using commercial finite element analysis (FEA) software as a black box. The detailed process of the new implementation of AH has been provided. The other is that NIAH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the CTE of a complex structure. Several examples are carried out to demonstrate the effectiveness of the new implementation. This work is expected to greatly promote the widespread use of AH in predicting the CTE of periodic composite materials.
基金supported by the National Natural Science Foundation of China (No.50971020)the National High-Tech Research and Development Program of China (No.2008AA03Z505)
文摘Diamond reinforced copper(Cu/diamond) composites were prepared by pressure infiltration for their application in thermal management where both high thermal conductivity and low coefficient of thermal expansion(CTE) are important.They were characterized by the microstructure and thermal properties as a function of boron content,which is used for matrix-alloying to increase the interfacial bonding between the diamond and copper.The obtained composites show high thermal conductivity(660 W/(m·K)) and low CET(7.4×10-6 K-1) due to the formation of the B13C2 layer at the diamond-copper interface,which greatly strengthens the interfacial bonding.Thermal property measurements indicate that in the Cu-B/diamond composites,the thermal conductivity and the CTE show a different variation trend as a function of boron content,which is attributed to the thickness and distribution of the interfacial carbide layer.The CTE behavior of the present composites can be well described by Kerner's model,especially for the composites with 0.5wt% B.