By using the solution describing a black hole embedded in the FLRW universe,we obtain the evolvingequation of the black hole mass expressed in terms of the cosmological parameters.The evolving equation indicates thati...By using the solution describing a black hole embedded in the FLRW universe,we obtain the evolvingequation of the black hole mass expressed in terms of the cosmological parameters.The evolving equation indicates thatin the phantom dark energy universe the black hole mass becomes zero before the Big Rip is reached.展开更多
The thermodynamic behavior of field equations for the generalized f(R) gravity with arbitrary coupling between matter and geometry is studied in the two kinds of spacetime,i.e.,the both spatially homogenous,isotropic ...The thermodynamic behavior of field equations for the generalized f(R) gravity with arbitrary coupling between matter and geometry is studied in the two kinds of spacetime,i.e.,the both spatially homogenous,isotropic FRW universe and static,spherically symmetric black hole spacetime.The field equations of the generalized f(R) gravity with arbitrary coupling between matter and geometry can be cast to the form of the first law of thermodynamics with the reputed entropy production terms dS,which are quite general and can degenerate to the cases of Einstein's general relativity and pure f(R) gravity with non-coupling and nonminimal coupling as special cases.The appearance of the entropy production term dS illustrates that the horizon thermodynamics is non-equilibrium one for the generalized f(R) gravity with arbitrary coupling between matter and geometry.展开更多
The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the a...The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ACDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me, h, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ - e^2/(hc) keeps to be invariant; (ii) (2s^1/2 - 2p^1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting △E(z) are calculated analytically, which belongs to O(1/R^2)-physics of dS-SR QM. Numerically, we find that when |R| = {103 Gly, 104 Gly, 105 Gly}, and z = {1, or 2}, the AE(z) 〉〉 1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.展开更多
文摘By using the solution describing a black hole embedded in the FLRW universe,we obtain the evolvingequation of the black hole mass expressed in terms of the cosmological parameters.The evolving equation indicates thatin the phantom dark energy universe the black hole mass becomes zero before the Big Rip is reached.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175077 and 11147150)the Natural Science Foundation of Liaoning Province(Grant Nos.20102124 and L2011189)
文摘The thermodynamic behavior of field equations for the generalized f(R) gravity with arbitrary coupling between matter and geometry is studied in the two kinds of spacetime,i.e.,the both spatially homogenous,isotropic FRW universe and static,spherically symmetric black hole spacetime.The field equations of the generalized f(R) gravity with arbitrary coupling between matter and geometry can be cast to the form of the first law of thermodynamics with the reputed entropy production terms dS,which are quite general and can degenerate to the cases of Einstein's general relativity and pure f(R) gravity with non-coupling and nonminimal coupling as special cases.The appearance of the entropy production term dS illustrates that the horizon thermodynamics is non-equilibrium one for the generalized f(R) gravity with arbitrary coupling between matter and geometry.
基金Supported in part by National Natural Science Foundation of China under Grant No. 10975128by the Chinese Science Academy Foundation under Grant No. KJCX-YW-N29
文摘The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ACDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me, h, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ - e^2/(hc) keeps to be invariant; (ii) (2s^1/2 - 2p^1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting △E(z) are calculated analytically, which belongs to O(1/R^2)-physics of dS-SR QM. Numerically, we find that when |R| = {103 Gly, 104 Gly, 105 Gly}, and z = {1, or 2}, the AE(z) 〉〉 1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.