This study uses NCEP/NCAR daily reanalysis data,NOAA outgoing long-wave radiation(OLR) data,the real-time multivariate MJO(RMM) index from the Australian Bureau of Meteorology and Tibetan Plateau vortex(TPV)data from ...This study uses NCEP/NCAR daily reanalysis data,NOAA outgoing long-wave radiation(OLR) data,the real-time multivariate MJO(RMM) index from the Australian Bureau of Meteorology and Tibetan Plateau vortex(TPV)data from the Chengdu Institute of Plateau Meteorology to discuss modulation of the Madden-Julian Oscillation(MJO)on the Tibetan Plateau Vortex(TPV).Wavelet and composite analysis are used.Results show that the MJO plays an important role in the occurrence of the TPV that the number of TPVs generated within an active period of the MJO is three times as much as that during an inactive period.In addition,during the active period,the number of the TPVs generated in phases 1 and 2 is larger than that in phases 3 and 7.After compositing phases 1 and 7 separately,all meteorological elements in phase 1 are apparently conducive to the generation of the TPV,whereas those in phase 7 are somewhat constrained.With its eastward propagation process,the MJO convection centre spreads eastward,and the vertical circulation within the tropical atmosphere changes.Due to the interaction between the mid-latitude and low-latitude atmosphere,changes occur in the baroclinic characteristics of the atmosphere,the available potential energy and eddy available potential energy of the atmosphere,and the circulation structures of the atmosphere over the Tibetan Plateau(TP) and surrounding areas.This results in significantly different water vapour transportation and latent heat distribution.Advantageous and disadvantageous conditions therefore alternate,leading to a significant difference among the numbers of plateau vortex in different phases.展开更多
A composition-modulated (HfO2)x(Al2O3)1-x charge trapping layer is proposed for charge trap flash memory by controlling the A1 atom content to form a peak and valley shaped band gap. It is found that the memory de...A composition-modulated (HfO2)x(Al2O3)1-x charge trapping layer is proposed for charge trap flash memory by controlling the A1 atom content to form a peak and valley shaped band gap. It is found that the memory device using the composition-modulated (HfO2)x(Al2O3)l-x as the charge trapping layer exhibits a larger memory window of 11.5 V, improves data retention even at high temperature, and enhances the program/erase speed. Improvements of the memory characteristics are attributed to the special band-gap structure resulting from the composition-modulated trapping layer. Therefore, the composition-modulated charge trapping layer may be useful in future nonvolatile flash memory device application.展开更多
TiO-2/SiO-2 mesoporous composite was synthesized by soaking_hydrolyzing method and its structure was characterized. The relationship between the shift of absorption edge and the amount of TiO-2 nanoparticles within th...TiO-2/SiO-2 mesoporous composite was synthesized by soaking_hydrolyzing method and its structure was characterized. The relationship between the shift of absorption edge and the amount of TiO-2 nanoparticles within the mesopores of SiO-2 as well as the annealing temperature was investigated. The results indicate that the extent of the blue shift of absorption edge increases with the decreasing amount of nanoparticles and decreases wtih the increasing annealing temperature.展开更多
A melilite Ba2CuGe2O7 ceramic was characterized by low sintering temperature and moderate microwave dielectric properties.Sintered at 960℃,the Ba2CuGe2O7 ceramic had a high relative density 97%,a low relative permitt...A melilite Ba2CuGe2O7 ceramic was characterized by low sintering temperature and moderate microwave dielectric properties.Sintered at 960℃,the Ba2CuGe2O7 ceramic had a high relative density 97%,a low relative permittivity(εr)9.43,a quality factor(Q×f)of 20,000 GHz,and a temperature coefficient of resonance frequency(τf)-76 ppm/℃.To get a deep understanding of the relationship between composition,structure,and dielectric performances,magnesium substitution for copper in Ba2CuGe2O7 was conducted.Influences of magnesium doping on the sintering behavior,crystal structure,and microwave dielectric properties were studied.Mg doping in Ba2CuGe2O7 caused negligible changes in the macroscopic crystal structure,grain morphology,and size distribution,while induced visible variation in the local structure as revealed by Raman analysis.Microwave dielectric properties exhibit a remarkable dependence on composition.On increasing the magnesium content,the relative permittivity featured a continuous decrease,while both the quality factor and the temperature coefficient of resonance frequency increased monotonously.Such variations in dielectric performances were clarified in terms of the polarizability,packing fraction,and band valence theory.展开更多
ZrCoSb based half-Heusler(HH)alloys have been widely studied as a p-type thermoelectric(TE)material for power generation applications in the mid-temperature regime.However,their intrinsically high thermal conductivity...ZrCoSb based half-Heusler(HH)alloys have been widely studied as a p-type thermoelectric(TE)material for power generation applications in the mid-temperature regime.However,their intrinsically high thermal conductivity has been found to be detrimental for the improvement in their thermoelectric figure-of-merit(ZT),which presently is far below unity.In the current work,a state-of-the-art ZT~1.1 at 873 K was realized in an optimized composition of nanostructured Zr1-xHfxCoSb_(0.9)Sn_(0.1) HH alloys by employing compositional modulation i.e.grain-by-grain compositional variations,which leads to a substantial increase in its power factor coupled with a concurrent decrease in its thermal conductivity.Significant reduction in the phonon mean-free-path is observed on Hf substitution,which is comparable to the average crystallite size(~25 nm),thus leading to a very low thermal conductivity of~2.2Wm^(-1)K^(-1) at 873 K,which is amongst the lowest reported in HH alloys.The TE device characteristics,estimated using cumulative temperature dependence model for quantitative evaluation of TE performance,yielded an output power density of~10 Wcm2 with a leg efficiency of~10%in the optimized composition of nanostructured Zr_(1-x)Hf_(x)CoSb_(0.9)Sn_(0.1) HH alloys,which is comparable to the reported efficiencies of other state-of-the-art TE materials.展开更多
基金National Basic Research Program of China(2012CB417202)National Natural Science Foundation of China(41175045,91337215,Ul 133603)Special Fund for Meteorological Research in the Public Interest(GYHY201206042)
文摘This study uses NCEP/NCAR daily reanalysis data,NOAA outgoing long-wave radiation(OLR) data,the real-time multivariate MJO(RMM) index from the Australian Bureau of Meteorology and Tibetan Plateau vortex(TPV)data from the Chengdu Institute of Plateau Meteorology to discuss modulation of the Madden-Julian Oscillation(MJO)on the Tibetan Plateau Vortex(TPV).Wavelet and composite analysis are used.Results show that the MJO plays an important role in the occurrence of the TPV that the number of TPVs generated within an active period of the MJO is three times as much as that during an inactive period.In addition,during the active period,the number of the TPVs generated in phases 1 and 2 is larger than that in phases 3 and 7.After compositing phases 1 and 7 separately,all meteorological elements in phase 1 are apparently conducive to the generation of the TPV,whereas those in phase 7 are somewhat constrained.With its eastward propagation process,the MJO convection centre spreads eastward,and the vertical circulation within the tropical atmosphere changes.Due to the interaction between the mid-latitude and low-latitude atmosphere,changes occur in the baroclinic characteristics of the atmosphere,the available potential energy and eddy available potential energy of the atmosphere,and the circulation structures of the atmosphere over the Tibetan Plateau(TP) and surrounding areas.This results in significantly different water vapour transportation and latent heat distribution.Advantageous and disadvantageous conditions therefore alternate,leading to a significant difference among the numbers of plateau vortex in different phases.
基金supported by the Science and Technology Research Key Project of Education Department of Henan, China (Grant No. 13A140021)the National Natural Science Foundation of China (Grant Nos. 50972054 and 61176124)+1 种基金the National Basic Research Program of China (Grant No. 2010CB934201)the State Key Program for Science and Technology of China (Grant No. 2009ZX02039-004)
文摘A composition-modulated (HfO2)x(Al2O3)1-x charge trapping layer is proposed for charge trap flash memory by controlling the A1 atom content to form a peak and valley shaped band gap. It is found that the memory device using the composition-modulated (HfO2)x(Al2O3)l-x as the charge trapping layer exhibits a larger memory window of 11.5 V, improves data retention even at high temperature, and enhances the program/erase speed. Improvements of the memory characteristics are attributed to the special band-gap structure resulting from the composition-modulated trapping layer. Therefore, the composition-modulated charge trapping layer may be useful in future nonvolatile flash memory device application.
文摘TiO-2/SiO-2 mesoporous composite was synthesized by soaking_hydrolyzing method and its structure was characterized. The relationship between the shift of absorption edge and the amount of TiO-2 nanoparticles within the mesopores of SiO-2 as well as the annealing temperature was investigated. The results indicate that the extent of the blue shift of absorption edge increases with the decreasing amount of nanoparticles and decreases wtih the increasing annealing temperature.
基金National Natural Science Foundation of China(No.62061011)National Key R&D Program of China(No.2017YFB0406300)+1 种基金Natural Science Foundation of Guangxi Zhuang Autonomous Region(No.2018GXNSFAA281253)high-level innovation team and outstanding scholar program of Guangxi institutes.
文摘A melilite Ba2CuGe2O7 ceramic was characterized by low sintering temperature and moderate microwave dielectric properties.Sintered at 960℃,the Ba2CuGe2O7 ceramic had a high relative density 97%,a low relative permittivity(εr)9.43,a quality factor(Q×f)of 20,000 GHz,and a temperature coefficient of resonance frequency(τf)-76 ppm/℃.To get a deep understanding of the relationship between composition,structure,and dielectric performances,magnesium substitution for copper in Ba2CuGe2O7 was conducted.Influences of magnesium doping on the sintering behavior,crystal structure,and microwave dielectric properties were studied.Mg doping in Ba2CuGe2O7 caused negligible changes in the macroscopic crystal structure,grain morphology,and size distribution,while induced visible variation in the local structure as revealed by Raman analysis.Microwave dielectric properties exhibit a remarkable dependence on composition.On increasing the magnesium content,the relative permittivity featured a continuous decrease,while both the quality factor and the temperature coefficient of resonance frequency increased monotonously.Such variations in dielectric performances were clarified in terms of the polarizability,packing fraction,and band valence theory.
基金the Board of Research in Nuclear Sciences,India for the financial support under the Scheme:37(3)/14/22/2016-BRNS with BSC.Nagendra S.Chauhan acknowledges CSIR-Senior Research Fellowship.(Grant No:31/001(0430)/2014-EMR-1)The technical support rendered by Dr.Vidya Nand Singh,Mr.Radhey Shyam,and Mr.Naval Kishor Upadhyay is also gratefully acknowledged.
文摘ZrCoSb based half-Heusler(HH)alloys have been widely studied as a p-type thermoelectric(TE)material for power generation applications in the mid-temperature regime.However,their intrinsically high thermal conductivity has been found to be detrimental for the improvement in their thermoelectric figure-of-merit(ZT),which presently is far below unity.In the current work,a state-of-the-art ZT~1.1 at 873 K was realized in an optimized composition of nanostructured Zr1-xHfxCoSb_(0.9)Sn_(0.1) HH alloys by employing compositional modulation i.e.grain-by-grain compositional variations,which leads to a substantial increase in its power factor coupled with a concurrent decrease in its thermal conductivity.Significant reduction in the phonon mean-free-path is observed on Hf substitution,which is comparable to the average crystallite size(~25 nm),thus leading to a very low thermal conductivity of~2.2Wm^(-1)K^(-1) at 873 K,which is amongst the lowest reported in HH alloys.The TE device characteristics,estimated using cumulative temperature dependence model for quantitative evaluation of TE performance,yielded an output power density of~10 Wcm2 with a leg efficiency of~10%in the optimized composition of nanostructured Zr_(1-x)Hf_(x)CoSb_(0.9)Sn_(0.1) HH alloys,which is comparable to the reported efficiencies of other state-of-the-art TE materials.