Unlocking offshore wind farms’high energy generation potential requires a comprehensive multi-disciplinary analysis that consists of intensive technical,economic,logistical,and environmental investigations.Offshore w...Unlocking offshore wind farms’high energy generation potential requires a comprehensive multi-disciplinary analysis that consists of intensive technical,economic,logistical,and environmental investigations.Offshore wind energy projects have high investment volumes that make it essential to conduct extensive site selection to ensure feasible investment decisions that reduce the potential financial risks.Depending on the scenario and circumstances,a ranking of alternative offshore wind energy projects helps to prioritise the investment decisions.Decisionmaking algorithms based on expert knowledge can support the prioritisation and thus alleviate the work load for investment decisions in the future.The case study considered here is to find the best site for a floating offshore wind farm in Norway from four pre-selected alternatives:Utsira Nord,Stadthavet,Froyabanken,and Trana Vest.We propose a hybrid decisionmaking model as a combined compromised solution(CoCoSo)based on the q-rung orthopair fuzzy sets(q-ROFSs)including the weighted q-rung orthopair fuzzy Hamacher average(Wq-ROFHA)and the weighted q-rung orthopair fuzzy Hamacher geometric mean(Wq-ROFHGM)operators.In this model,the q-ROFSs based full consistency method(FUCOM)is introduced as a new methodology to determine the weights of the decision criteria.The results of the proposed model show that the best site among the investigated four alternatives is A1:Utsira Nord.A sensitivity analysis has verified the stability of the proposed decision-making model.展开更多
基金This work has been prepared as part of the Norwegian Research Centre on Wind Energy(NorthWind)and the project Research on Smart Operation Control Technologies for Offshore Wind Farms(CONWIND)NorthWind(2021-2029)is a Centre for Environmental-friendly Energy Research co-financed by the Research Council of Norway(contract 321954)CONWIND(2020-2022)is a Norwegian-Chinese collaboration project on offshore wind energy co-financed by the Research Council of Norway(contract 304229).
文摘Unlocking offshore wind farms’high energy generation potential requires a comprehensive multi-disciplinary analysis that consists of intensive technical,economic,logistical,and environmental investigations.Offshore wind energy projects have high investment volumes that make it essential to conduct extensive site selection to ensure feasible investment decisions that reduce the potential financial risks.Depending on the scenario and circumstances,a ranking of alternative offshore wind energy projects helps to prioritise the investment decisions.Decisionmaking algorithms based on expert knowledge can support the prioritisation and thus alleviate the work load for investment decisions in the future.The case study considered here is to find the best site for a floating offshore wind farm in Norway from four pre-selected alternatives:Utsira Nord,Stadthavet,Froyabanken,and Trana Vest.We propose a hybrid decisionmaking model as a combined compromised solution(CoCoSo)based on the q-rung orthopair fuzzy sets(q-ROFSs)including the weighted q-rung orthopair fuzzy Hamacher average(Wq-ROFHA)and the weighted q-rung orthopair fuzzy Hamacher geometric mean(Wq-ROFHGM)operators.In this model,the q-ROFSs based full consistency method(FUCOM)is introduced as a new methodology to determine the weights of the decision criteria.The results of the proposed model show that the best site among the investigated four alternatives is A1:Utsira Nord.A sensitivity analysis has verified the stability of the proposed decision-making model.