期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Application research on ZVZCS full-bridge converter technique
1
作者 贲洪奇 杨世彦 +1 位作者 原树斌 赵俊宝 《China Welding》 EI CAS 2005年第2期113-116,共4页
Based on ZVZCS (zero voltage zero current switching) full bridge converter technique, a novel inverter welding power supply is designed, in which the secondary side of the transformer adopts passive clamping circuit... Based on ZVZCS (zero voltage zero current switching) full bridge converter technique, a novel inverter welding power supply is designed, in which the secondary side of the transformer adopts passive clamping circuit to reduce voltage stress of rectifying components. This supply can realize power switches ZVS (zero voltage switching ) or ZCS (zero current switching) within a very wide range of load; Only through setting up blocking capacitor in the primary side of transformer, the power transformer's bias in the full-bridge converter is suppressed and the primary current can be reset easily. In addition, how to calculate the blocking capacitor and its influence to power supply performance are also subjects discussed in this paper. 展开更多
关键词 zero voltage switching zero current switching full-bridge converter blocking capacitor
下载PDF
Research on the Intelligent Control Strategy of the Fuel Cell Phase-Shifting Full-Bridge Power Electronics DC-DC Converter
2
作者 Lei Zhang Yinlong Yuan +3 位作者 Yihe Sun Yun Cheng Dian Wu Lei Ren 《Energy Engineering》 EI 2022年第1期387-405,共19页
focus of all countries.As an effective new energy,the fuel cell has attracted the attention of scholars.However,due to the particularity of proton exchange membrane fuel cell(PEMFC),the performance of traditional PI c... focus of all countries.As an effective new energy,the fuel cell has attracted the attention of scholars.However,due to the particularity of proton exchange membrane fuel cell(PEMFC),the performance of traditional PI controlled phase-shifted full-bridge power electronics DC-DC converter cannot meet the needs of practical application.In order to further improve the dynamic performance of the converter,this paper first introduces several main topologies of the current mainstream front-end DC-DC converter,and analyzes their performance in the fuel cell system.Then,the operation process of the phase-shifted fullbridge power electronics DC-DC converter is introduced,and the shortcomings of the traditional PI control are analyzed.Finally,a double closed-loop adaptive fuzzy PI controller is proposed,which is characterized by dynamically adjusting PI parameters according to different working states to complete the intelligent control of phase-shifted full-bridge DC-DC converter.The simulation results in MATLAB/Simulink show that the proposed algorithm has good a control effect.Compared with the traditional algorithm,the overshoot and stabilization time of the system are shorter.The algorithm can effectively suppress the fluctuation of the output current of the fuel cell converter,and is a very practical control method. 展开更多
关键词 Phase-shifted full-bridge adaptive fuzzy PI control proton exchange membrane fuel cell MATLAB/SIMULINK
下载PDF
Research on Phase-Shifted Full-Bridge Circuit Based on Frequency and Phase-Shift Synthesis Modulation Strategy
3
作者 Mingda Jiang Yanbo Che +2 位作者 Hongfeng Li Muhammad Ishaq Chao Xing 《Energy Engineering》 EI 2022年第2期699-721,共23页
The full-bridge converters usually use transformer leakage inductance and parallel resonant capacitors to achieve smooth current commutation and soft switching functions,which can easily cause problems such as energy ... The full-bridge converters usually use transformer leakage inductance and parallel resonant capacitors to achieve smooth current commutation and soft switching functions,which can easily cause problems such as energy leakage and significant duty cycle loss.This paper designs a novel full-bridge zero-current(FB-ZCS)converter with series resonant capacitors and proposes a frequency and phase-shift synthesis modulation(FPSSM)control strategy based on this topology.Compared with the traditional parallel resonant capacitor circuit,the passive components used are significantly reduced,the structure is simple,and there is only a slight energy loss.By controlling the charging time of the capacitor,it can be achieved without additional switches or auxiliary circuits.The automatic control of capacitor energy based on input current addresses the low efficiency of the traditional control strategies.This paper introduces its principle in detail and verifies it through simulation.Finally,an experimental prototype was built further to demonstrate the feasibility of the theory through experiments.The module can be applied to a photovoltaic DC collection system using input parallel output series(IPOS)cascade to provide a new topology for large-scale,long-distance DC transmission. 展开更多
关键词 full-bridge converter frequency and phase-shift synthesis modulation(FPSSM) photovoltaic DC collection system control strategy
下载PDF
The Implementation of a High Efficiency Full-Bridge Converter
4
作者 Joy Iong-Zong Chen 《Engineering(科研)》 2011年第4期331-339,共9页
A high efficiency full-bridge converter is investigated and implemented in this paper. The measured data result from the other converter implemented by IC UCC3895 is to compare with that of the previous converter. Thi... A high efficiency full-bridge converter is investigated and implemented in this paper. The measured data result from the other converter implemented by IC UCC3895 is to compare with that of the previous converter. This full-bridge converter proposed and implemented converter can obtain about 96% power efficiency in conversion procedure when compared with that of 90%, which were ever published by the conventional techniques. Apart from, the L-C resonance circuits were developed and embedded into the popular PWM (pulse width modulation) power converter, which is referred as the soft-switching, so as to down sizing the volume of the IC which can totally reduces the power losses caused in the duration of a semi-con- ductor switching. 展开更多
关键词 High Efficiency full-bridge CONVERTER SWITCHING LOSSES SYNCHRONIZATION FILTER
下载PDF
压电泵的驱动电源研制及其特性研究 被引量:3
5
作者 国海峰 肖站 李生 《微特电机》 北大核心 2011年第4期36-39,共4页
建立了压电泵的数学模型并提出了一种新的压电泵驱动电源结构,在此基础上研发了一种新的驱动电源并对压电泵的工作特性进行了实验研究。该电源采用Boost变换器升压和Full-Bridge变换器逆变,能给压电泵提供±150 V方波电压,并使压电... 建立了压电泵的数学模型并提出了一种新的压电泵驱动电源结构,在此基础上研发了一种新的驱动电源并对压电泵的工作特性进行了实验研究。该电源采用Boost变换器升压和Full-Bridge变换器逆变,能给压电泵提供±150 V方波电压,并使压电泵工作在较宽的频率范围(10~100 Hz),具有频率可调、体积小、质量轻、功耗低、输出精度高、响应速度较快、驱动能力强的特点。仿真及实验结果表明,压电泵的输出流量随驱动电源的输入电压和输入频率成规律性变化。 展开更多
关键词 压电泵 驱动电源 BOOST变换器 full-bridge变换器
下载PDF
Digital control system for pulsed MIG welding power based on STM32
6
作者 吴开源 章涛 +2 位作者 何祖伟 李华佳 程佳 《China Welding》 EI CAS 2015年第2期75-80,共6页
Digital control system for pulsed MIG welding power based on STM32 is set up with 32-bit STM32FlO3ZET6 directing against the pulse waveform modulation of pulsed MIG welding. High-frequency inverter and medium-low freq... Digital control system for pulsed MIG welding power based on STM32 is set up with 32-bit STM32FlO3ZET6 directing against the pulse waveform modulation of pulsed MIG welding. High-frequency inverter and medium-low frequency pulse waveform modulation of pulsed MIG welding are realized by using the integrated PWM module within STM32 to generate PWM signals of phase-shifted full-bridge soft-switching and constant-current control of output current is achieved by means of anti-windup PI control algorithm to improve the stability and reliability of control system. Experimental results demonstrate that the designed digital control system based on STM32 can achieve pegrect pulsed MIG welding technique with stable welding process and good weld appearance, fully demonstrating the advantages of digital control based on STM32. 展开更多
关键词 pulsed MIG welding digital control STM32 phase-shifted full-bridge soft-switching
下载PDF
DC Traction Power Supply System Based on Modular Multilevel Converter Suitable for Energy Feeding and De-icing
7
作者 Lingxi Hou Shuqing Zhang +4 位作者 Yingdong Wei Xiaoqian Li Qirong Jiang Mingrui Li Weirui Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期649-659,共11页
A novel DC traction power supply system suitable for energy feeding and de-icing is proposed in this paper for an urban rail transit catenary on the basis of the full bridge submodule (FBSM) modular multilevel convert... A novel DC traction power supply system suitable for energy feeding and de-icing is proposed in this paper for an urban rail transit catenary on the basis of the full bridge submodule (FBSM) modular multilevel converter (MMC). The FBSM-MMC is a novel type of voltage source converter (VSC) and can directly control the output DC voltage and conduct bipolar currents, thus flexibly controlling the power flow of the urban rail transit catenary. The proposed topology can overcome the inherent disadvantages of the output voltage drop in the diode rectifier units, increase the power supply distance and reduce the number of traction substations. The flexible DC technology can coordinate multiple FBSM-MMCs in a wide area and jointly complete the bidirectional control of catenary power flow during the operation of the electric locomotive, so as to realize the local consumption and optimal utilization of the recovered braking energy of the train. In addition, the FBSM-MMCs can also adjust the output current when the locomotive is out of service to prevent the catenary from icing in winter. The working modes of the proposed topology are illustrated in detail and the control strategy is specially designed for normal locomotive operations and catenary de-icing. Simulation cases conducted by PSCAD/EMTDC validate the proposed topology and its control strategy. 展开更多
关键词 DC traction power supply system de-icing for catenary energy feeding modular multilevel converter based on full-bridge submodules(FBSM-MMC) urban rail transit
原文传递
A DC Chopper Topology to Mitigate Commutation Failure of Line Commutated Converter Based High Voltage Direct Current Transmission 被引量:5
8
作者 Chunyi Guo Bo Liu Chengyong Zhao 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第2期345-355,共11页
To reduce the probability of commutation failure(CF)of a line commutated converter based high-voltage direct current(LCC-HVDC)transmission,a DC chopper topology composed of power consumption sub-modules based on thyri... To reduce the probability of commutation failure(CF)of a line commutated converter based high-voltage direct current(LCC-HVDC)transmission,a DC chopper topology composed of power consumption sub-modules based on thyristor full-bridge module(TFB-PCSM)is proposed.Firstly,the mechanism of the proposed topology to mitigate CF is analyzed,and the working modes of TFB-PCSM in different operation states are introduced.Secondly,the coordinated control strategy between the proposed DC chopper and LCC-HVDC is designed,and the voltage-current stresses of the TFB-PCSMs are investigated.Finally,the ability to mitigate the CF issues and the fault recovery performance of LCC-HVDC system are studied in PSCAD/EMTDC.The results show that the probability of CF of LCC-HVDC is significantly reduced,and the performances of fault recovery are effectively improved by the proposed DC chopper. 展开更多
关键词 Line commutated converter based high-voltage direct current(LCC-HVDC)transmission DC chopper power consumption sub-module based on thyristor full-bridge module(TFB-PCSM) commutation failure(CF) fault recovery capability
原文传递
Neutral-point-clamped hybrid multilevel converter with DC fault blocking capability for medium-voltage DC transmission 被引量:3
9
作者 Xinyu YU Yingdong WEI +3 位作者 Qirong JIANG Xiaorong XIE Yuquan LIU Ke WANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第4期524-536,共13页
This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules al... This paper proposes a novel hybrid multilevel converter with DC fault-blocking capability, i.e., the neutral-point clamped hybrid multilevel converter(NHMC).By employing two types of unipolar full-bridge submodules along with director switches, which are composed of seriesconnected insulated-gate bipolar transistors, the NHMC combines the features and advantages of the neutral-point clamped converter and the modular multilevel converter.The basic topology, operating principles, modulation scheme, and energy-balancing scheme of the NHMC are presented. The DC fault-blocking capability of the NHMC is investigated. The number of power electronic devices used by the NHMC is calculated and compared with other multilevel converters, showing that the proposed NHMC can be an economical and feasible option for medium-voltage DC transmission with overhead lines. Simulation results demonstrate the features and operating scheme of the proposed NHMC. 展开更多
关键词 Neutral-point-clamped hybrid multilevel converter(NHMC) Unipolar full-bridge submodule(UFBSM) DC fault blocking capability Modulation scheme
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部