At present,the active control of gear vibration mostly relies on existing algorithms.In order to achieve effective vibration reduction of the gear system,particularly during the vibration process,this paper proposes a...At present,the active control of gear vibration mostly relies on existing algorithms.In order to achieve effective vibration reduction of the gear system,particularly during the vibration process,this paper proposes a multi-channel VSMFxLMS algorithm based on the FxLMS algorithm.This novel approach takes into account the time-varying nature of the vibration signal during gear vibration.Adaptive filter power coefficients are updated in a skip-tongue variable-step manner using momentum factors.Firstly,the paper establishes the dynamics model of the gear system and analyzes the nonlinear dynamic characteristics of the system.It then examines the vibration damping effect of the FxLMS algorithm and analyzes its performance under different gear system motion states,considering different step lengths and momentum factors.Lastly,the proposed VSMFxLMS algorithm is compared with the FxLMS algorithm,highlighting the superiority of the former.Overall,this research highlights the potential of a multi-channel VSMFxLMS algorithm in reducing vibrations in gear systems.The study optimizes the performance of gear systems while using advanced control strategies.展开更多
An improved algorithm is presented to identify the secondary path based on the adaptive notch filter approach. Since the interference from the narrow band excitation signal is suppressed by the adaptive notch filter, ...An improved algorithm is presented to identify the secondary path based on the adaptive notch filter approach. Since the interference from the narrow band excitation signal is suppressed by the adaptive notch filter, the convergent speed of the on-line control path identification process is significantly improved. As a result, the controller performance is greatly enhanced. Besides the algorithm development, some important factors, such as the influence of reference signal on the controller convergent speed, are also discussed. The effectiveness of the algorithm is verified by experimental results.展开更多
Performance analysis of filtered-X LMS (FXLMS) algorithm with secondary path modeling error is carried out in both time and frequency domain. It is shown firstly that the effects of secondary path modeling error on th...Performance analysis of filtered-X LMS (FXLMS) algorithm with secondary path modeling error is carried out in both time and frequency domain. It is shown firstly that the effects of secondary path modeling error on the performance of FXLMS algorithm are determined by the distribution of the relative error of secondary path model along with frequency. In case of that the distribution of relative error is uniform the modeling error of secondary path will have no effects on the performance of the algorithm. In addition, a limitation property of FXLMS algorithm is proved, which implies that the negative effects of secondary path modeling error can be compensated by increasing the adaptive filter length. At last, some insights into the 'spillover' phenomenon of FXLMS algorithm are given.展开更多
A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) o...A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.展开更多
基金Supported by Sichuan Provincial Science and Technology Program(Grant No.2024NSFSC0902)National Natural Science Foundation of China(Grant Nos.52405254,52105108,52375039)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(Grant No.2023QNRC001)Hebei Provincial Natural Science Foundation(Grant No.E2023105039).
文摘At present,the active control of gear vibration mostly relies on existing algorithms.In order to achieve effective vibration reduction of the gear system,particularly during the vibration process,this paper proposes a multi-channel VSMFxLMS algorithm based on the FxLMS algorithm.This novel approach takes into account the time-varying nature of the vibration signal during gear vibration.Adaptive filter power coefficients are updated in a skip-tongue variable-step manner using momentum factors.Firstly,the paper establishes the dynamics model of the gear system and analyzes the nonlinear dynamic characteristics of the system.It then examines the vibration damping effect of the FxLMS algorithm and analyzes its performance under different gear system motion states,considering different step lengths and momentum factors.Lastly,the proposed VSMFxLMS algorithm is compared with the FxLMS algorithm,highlighting the superiority of the former.Overall,this research highlights the potential of a multi-channel VSMFxLMS algorithm in reducing vibrations in gear systems.The study optimizes the performance of gear systems while using advanced control strategies.
文摘An improved algorithm is presented to identify the secondary path based on the adaptive notch filter approach. Since the interference from the narrow band excitation signal is suppressed by the adaptive notch filter, the convergent speed of the on-line control path identification process is significantly improved. As a result, the controller performance is greatly enhanced. Besides the algorithm development, some important factors, such as the influence of reference signal on the controller convergent speed, are also discussed. The effectiveness of the algorithm is verified by experimental results.
文摘Performance analysis of filtered-X LMS (FXLMS) algorithm with secondary path modeling error is carried out in both time and frequency domain. It is shown firstly that the effects of secondary path modeling error on the performance of FXLMS algorithm are determined by the distribution of the relative error of secondary path model along with frequency. In case of that the distribution of relative error is uniform the modeling error of secondary path will have no effects on the performance of the algorithm. In addition, a limitation property of FXLMS algorithm is proved, which implies that the negative effects of secondary path modeling error can be compensated by increasing the adaptive filter length. At last, some insights into the 'spillover' phenomenon of FXLMS algorithm are given.
基金Supported by the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No. 200802171009)+2 种基金the Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.