Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrare...Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.展开更多
文摘目前还没有基于国产卫星的1 km分辨率的全天候陆表温度(LST)产品,FY-3D卫星提供了中分辨率成像仪(MERSI)Ⅱ型1 km分辨率晴空LST产品与微波成像仪(MWRI)25 km全天候LST产品,因此可结合两者优势开展全天候1 km分辨率LST的融合研究。基于地理加权回归(GWR)方法,选择海拔、FY-3D归一化植被指数和归一化建筑指数等建立GWR模型对FY-3D/MWRI 25 km LST降尺度到1 km,并与MERSI 1 km LST进行融合;同时针对MWRI轨道间隙,利用前后1天融合后的云覆盖像元1 km LST进行补值,可以得到接近全天候下的1 km LST。基于以上融合算法,选择了中国区域多个典型日期FY-3D/MERSI和MWRI LST官网产品进行了融合试验,并利用公开发布的全天候1 km LST产品(TPDC LST)对FY-3D 1 km LST融合结果进行了评估。研究结果表明,基于GWR法的LST降尺度方法,可以有效避免传统微波LST降尺度方法中存在的“斑块”效应和局地温度偏低等问题;LST融合结果有值率从融合前的22.4%~36.9%可提高到融合后69.3%~80.7%,融合结果与TPDC LST的空间决定系数为0.503~0.787,均方根误差为3.6~5.8 K,其中晴空为2.6~4.9 K,云下为4.1~6.1 K;分析还表明目前官网产品FY-3D/MERSI和MWRI LST均存在缺值较多与精度偏低等问题,显示其存在较大改进潜力,这有利于进一步改进FY-3D LST融合质量。
文摘Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.