The paper develops a passive sub-millimeter precipitation retrievals algorithm for Microwave Humidity and Temperature Sounder(MWHTS)onboard the Chinese Feng Yun 3C(FY-3C)satellite.The retrieval algorithm employs a num...The paper develops a passive sub-millimeter precipitation retrievals algorithm for Microwave Humidity and Temperature Sounder(MWHTS)onboard the Chinese Feng Yun 3C(FY-3C)satellite.The retrieval algorithm employs a number of neural network estimators trained and evaluated using the validated global reference physical model NCEP/WRF/ARTS,and works for seawater.NCEP data per 6 hours are downloaded to run the Weather Research and Forecast model WRF,and derive the typical precipitation data from the whole world.The Atmospheric Radiative Transfer Simulator ARTS is feasible for performing simulations of atmospheric radiative transfer.Rain detection algorithm has been used to generate level 2 products.Retrievals are reliable for surface precipitation rate higher than 0.1 mm/h at 15km resolution,which is in good agreement with those retrieved using the Precipitation retrieval algorithm version 1(ATMP-1)for Advanced Technology Microwave Sounder(ATMS)aboard Suomi NPP satellite.展开更多
文摘The paper develops a passive sub-millimeter precipitation retrievals algorithm for Microwave Humidity and Temperature Sounder(MWHTS)onboard the Chinese Feng Yun 3C(FY-3C)satellite.The retrieval algorithm employs a number of neural network estimators trained and evaluated using the validated global reference physical model NCEP/WRF/ARTS,and works for seawater.NCEP data per 6 hours are downloaded to run the Weather Research and Forecast model WRF,and derive the typical precipitation data from the whole world.The Atmospheric Radiative Transfer Simulator ARTS is feasible for performing simulations of atmospheric radiative transfer.Rain detection algorithm has been used to generate level 2 products.Retrievals are reliable for surface precipitation rate higher than 0.1 mm/h at 15km resolution,which is in good agreement with those retrieved using the Precipitation retrieval algorithm version 1(ATMP-1)for Advanced Technology Microwave Sounder(ATMS)aboard Suomi NPP satellite.