Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentra...Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.展开更多
Precipitation detection is an essential step in radiance assimilation because the uncertainties in precipitation would affect the radiative transfer calculation and observation errors.The traditional precipitation det...Precipitation detection is an essential step in radiance assimilation because the uncertainties in precipitation would affect the radiative transfer calculation and observation errors.The traditional precipitation detection method for microwave only detects clouds and precipitation horizontally,without considering the three-dimensional distribution of clouds.Extending precipitation detection from 2D to 3D is expected to bring more useful information to the data assimilation without using the all-sky approach.In this study,the 3D precipitation detection method is adopted to assimilate Microwave Temperature Sounder-2(MWTS-Ⅱ)onboard the Fengyun-3D,which can dynamically detect the channels above precipitating clouds by considering the near-real-time cloud parameters.Cycling data assimilation and forecasting experiments for Typhoons Lekima(2019)and Mitag(2019)are carried out.Compared with the control experiment,the quantity of assimilated data with the 3D precipitation detection increases by approximately 23%.The quality of the additional MWTS-Ⅱradiance data is close to the clear-sky data.The case studies show that the average root-mean-square errors(RMSE)of prognostic variables are reduced by 1.7%in the upper troposphere,leading to an average reduction of4.53%in typhoon track forecasts.The detailed diagnoses of Typhoon Lekima(2019)further show that the additional MWTS-Ⅱradiances brought by the 3D precipitation detection facilitate portraying a more reasonable circulation situation,thus providing more precise structures.This paper preliminarily proves that 3D precipitation detection has potential added value for increasing satellite data utilization and improving typhoon forecasts.展开更多
The snow depth on sea ice is an extremely critical part of the cryosphere.Monitoring and understanding changes of snow depth on Antarctic sea ice is beneficial for research on sea ice and global climate change.The Mic...The snow depth on sea ice is an extremely critical part of the cryosphere.Monitoring and understanding changes of snow depth on Antarctic sea ice is beneficial for research on sea ice and global climate change.The Microwave Radiation Imager(MWRI)sensor aboard the Chinese FengYun-3D(FY-3D)satellite has great potential for obtaining information of the spatial and temporal distribution of snow depth on the sea ice.By comparing in-situ snow depth measurements during the 35th Chinese Antarctic Research Expedition(CHINARE-35),we took advantage of the combination of multiple gradient ratio(GR(36V,10V)and GR(36V,18V))derived from the measured brightness temperature of FY-3D MWRI to estimate the snow depth.This method could simultaneously introduce the advantages of high and low GR in the snow depth retrieval model and perform well in both deep and shallow snow layers.Based on this,we constructed a novel model to retrieve the FY-3D MWRI snow depth on Antarctic sea ice.The new model validated by the ship-based observational snow depth data from CHINARE-35 and the snow depth measured by snow buoys from the Alfred Wegener Institute(AWI)suggest that the model proposed in this study performs better than traditional models,with root mean square deviations(RMSDs)of 8.59 cm and 7.71 cm,respectively.A comparison with the snow depth measured from Operation IceBridge(OIB)project indicates that FY-3D MWRI snow depth was more accurate than the released snow depth product from the U.S.National Snow and Ice Data Center(NSIDC)and the National Tibetan Plateau Data Center(NTPDC).The spatial distribution of the snow depth from FY-3D MWRI agrees basically with that from ICESat-2;this demonstrates its reliability for estimating Antarctic snow depth,and thus has great potential for understanding snow depth variations on Antarctic sea ice in the context of global climate change.展开更多
文摘目前还没有基于国产卫星的1 km分辨率的全天候陆表温度(LST)产品,FY-3D卫星提供了中分辨率成像仪(MERSI)Ⅱ型1 km分辨率晴空LST产品与微波成像仪(MWRI)25 km全天候LST产品,因此可结合两者优势开展全天候1 km分辨率LST的融合研究。基于地理加权回归(GWR)方法,选择海拔、FY-3D归一化植被指数和归一化建筑指数等建立GWR模型对FY-3D/MWRI 25 km LST降尺度到1 km,并与MERSI 1 km LST进行融合;同时针对MWRI轨道间隙,利用前后1天融合后的云覆盖像元1 km LST进行补值,可以得到接近全天候下的1 km LST。基于以上融合算法,选择了中国区域多个典型日期FY-3D/MERSI和MWRI LST官网产品进行了融合试验,并利用公开发布的全天候1 km LST产品(TPDC LST)对FY-3D 1 km LST融合结果进行了评估。研究结果表明,基于GWR法的LST降尺度方法,可以有效避免传统微波LST降尺度方法中存在的“斑块”效应和局地温度偏低等问题;LST融合结果有值率从融合前的22.4%~36.9%可提高到融合后69.3%~80.7%,融合结果与TPDC LST的空间决定系数为0.503~0.787,均方根误差为3.6~5.8 K,其中晴空为2.6~4.9 K,云下为4.1~6.1 K;分析还表明目前官网产品FY-3D/MERSI和MWRI LST均存在缺值较多与精度偏低等问题,显示其存在较大改进潜力,这有利于进一步改进FY-3D LST融合质量。
基金supported by the Feng Yun Application Pioneering Project (FY-APP-2022.0502)the National Natural Science Foundation of China (Grant No. 42205140)。
文摘Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.
基金jointly sponsored by the National Key Research and Development Program of China(Grant Nos.2018YFC1506701 and 2017YFC1502102)the National Natural Science Foundation of China(Grant No.41675102)。
文摘Precipitation detection is an essential step in radiance assimilation because the uncertainties in precipitation would affect the radiative transfer calculation and observation errors.The traditional precipitation detection method for microwave only detects clouds and precipitation horizontally,without considering the three-dimensional distribution of clouds.Extending precipitation detection from 2D to 3D is expected to bring more useful information to the data assimilation without using the all-sky approach.In this study,the 3D precipitation detection method is adopted to assimilate Microwave Temperature Sounder-2(MWTS-Ⅱ)onboard the Fengyun-3D,which can dynamically detect the channels above precipitating clouds by considering the near-real-time cloud parameters.Cycling data assimilation and forecasting experiments for Typhoons Lekima(2019)and Mitag(2019)are carried out.Compared with the control experiment,the quantity of assimilated data with the 3D precipitation detection increases by approximately 23%.The quality of the additional MWTS-Ⅱradiance data is close to the clear-sky data.The case studies show that the average root-mean-square errors(RMSE)of prognostic variables are reduced by 1.7%in the upper troposphere,leading to an average reduction of4.53%in typhoon track forecasts.The detailed diagnoses of Typhoon Lekima(2019)further show that the additional MWTS-Ⅱradiances brought by the 3D precipitation detection facilitate portraying a more reasonable circulation situation,thus providing more precise structures.This paper preliminarily proves that 3D precipitation detection has potential added value for increasing satellite data utilization and improving typhoon forecasts.
基金The National Natural Science Foundation of China under contract No.42076235the Fundamental Research Funds for the Central Universities under contract No.2042022kf0018.
文摘The snow depth on sea ice is an extremely critical part of the cryosphere.Monitoring and understanding changes of snow depth on Antarctic sea ice is beneficial for research on sea ice and global climate change.The Microwave Radiation Imager(MWRI)sensor aboard the Chinese FengYun-3D(FY-3D)satellite has great potential for obtaining information of the spatial and temporal distribution of snow depth on the sea ice.By comparing in-situ snow depth measurements during the 35th Chinese Antarctic Research Expedition(CHINARE-35),we took advantage of the combination of multiple gradient ratio(GR(36V,10V)and GR(36V,18V))derived from the measured brightness temperature of FY-3D MWRI to estimate the snow depth.This method could simultaneously introduce the advantages of high and low GR in the snow depth retrieval model and perform well in both deep and shallow snow layers.Based on this,we constructed a novel model to retrieve the FY-3D MWRI snow depth on Antarctic sea ice.The new model validated by the ship-based observational snow depth data from CHINARE-35 and the snow depth measured by snow buoys from the Alfred Wegener Institute(AWI)suggest that the model proposed in this study performs better than traditional models,with root mean square deviations(RMSDs)of 8.59 cm and 7.71 cm,respectively.A comparison with the snow depth measured from Operation IceBridge(OIB)project indicates that FY-3D MWRI snow depth was more accurate than the released snow depth product from the U.S.National Snow and Ice Data Center(NSIDC)and the National Tibetan Plateau Data Center(NTPDC).The spatial distribution of the snow depth from FY-3D MWRI agrees basically with that from ICESat-2;this demonstrates its reliability for estimating Antarctic snow depth,and thus has great potential for understanding snow depth variations on Antarctic sea ice in the context of global climate change.