FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly impr...FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly improved with respect to those of first generation, as well as the radiometric calibration and sensitivity. The combination of multichannel detection and vertical sounding was first realized on FY-4, because both the Advanced Geostationary Radiation Imager(AGRI) and Geostationary Interferometric Infrared Sounder(GIIRS) are on the same spacecraft. The main performance of the payloads including AGRI, GIIRS and Lightning Mapping Imager, and the spacecraft bus are presented, the performance being equivalent to the level of the third generation meteorological satellites in Europe and USA. The acquiring methods of remote sensing data including multichannel and high precision quantitative observing, imaging collection of the ground and cloud, vertical observation of atmospheric temperature and moisture, lightning imaging observation and space environment detection are shown. Several innovative technologies including high accuracy rotation angle detection and scanning control, high precision calibration, micro vibration suppression, unified reference of platform and payload and on-orbit measurement, real-time image navigation and registration on-orbit were applied in FY-4.展开更多
After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostati...After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostationary orbit satellites operationally. Up to now, there are 17 Fengyun(FY) satellites that have been launched successfully since 1988. There are two FY polar orbital satellites and four FY geostationary orbit satellites operate in the space to provide a huge amount of the earth observation data to the user communities. The FY satellite data has been applied not only in the meteorological but also in agriculture,hydraulic engineering, environmental, education, scientific research and other fields. More recently, three meteorological satellites have been launched within the past two years. They are FY-4 A on 11 December2016, FY-3 D on 15 November 2017 and FY-2 H on 5 June 2018. This paper introduces the current status of FY meteorological satellites and data service. The updates of the latest three satellites have been addressed.The characteristics of their payloads on-boarding have been specified in details and the benefit fields have been anticipated separately.展开更多
Fengyun-4A(FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hypersp...Fengyun-4A(FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group(AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager(AHI), and sounder data, obtained from the Atmospheric Infra Red Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters.Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.展开更多
文摘FY-4 is the second generation of Chinese geostationary satellite for quantitative remote sensing meteorological application. The detection efficiency, spectral bands, spatial and time resolution have been greatly improved with respect to those of first generation, as well as the radiometric calibration and sensitivity. The combination of multichannel detection and vertical sounding was first realized on FY-4, because both the Advanced Geostationary Radiation Imager(AGRI) and Geostationary Interferometric Infrared Sounder(GIIRS) are on the same spacecraft. The main performance of the payloads including AGRI, GIIRS and Lightning Mapping Imager, and the spacecraft bus are presented, the performance being equivalent to the level of the third generation meteorological satellites in Europe and USA. The acquiring methods of remote sensing data including multichannel and high precision quantitative observing, imaging collection of the ground and cloud, vertical observation of atmospheric temperature and moisture, lightning imaging observation and space environment detection are shown. Several innovative technologies including high accuracy rotation angle detection and scanning control, high precision calibration, micro vibration suppression, unified reference of platform and payload and on-orbit measurement, real-time image navigation and registration on-orbit were applied in FY-4.
基金Supported by the National Key Research&Development Program of China(2018YFB0504900,2018YFB0504901,2018YFB0504905)
文摘After nearly 50 years of development, Fengyun(FY) satellite ushered in its best moment. China has become one of the three countries or units in the world(China, USA, and EU) that maintain both polar orbit and geostationary orbit satellites operationally. Up to now, there are 17 Fengyun(FY) satellites that have been launched successfully since 1988. There are two FY polar orbital satellites and four FY geostationary orbit satellites operate in the space to provide a huge amount of the earth observation data to the user communities. The FY satellite data has been applied not only in the meteorological but also in agriculture,hydraulic engineering, environmental, education, scientific research and other fields. More recently, three meteorological satellites have been launched within the past two years. They are FY-4 A on 11 December2016, FY-3 D on 15 November 2017 and FY-2 H on 5 June 2018. This paper introduces the current status of FY meteorological satellites and data service. The updates of the latest three satellites have been addressed.The characteristics of their payloads on-boarding have been specified in details and the benefit fields have been anticipated separately.
基金National Natural Science Foundation(41405035,41571348,and 41405038)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406011 and GYHY201506074)
文摘Fengyun-4A(FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group(AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager(AHI), and sounder data, obtained from the Atmospheric Infra Red Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters.Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.