为加强多源闪电数据在干旱区的融合应用,利用新疆民航三维地基闪电探测系统(3-Dimension Lightning Location System,3-DLLS)、全球闪电定位网(World-Wide Lightning Location Network,WWLLN)和气象部门ADTD(Advanced Time of Arrival a...为加强多源闪电数据在干旱区的融合应用,利用新疆民航三维地基闪电探测系统(3-Dimension Lightning Location System,3-DLLS)、全球闪电定位网(World-Wide Lightning Location Network,WWLLN)和气象部门ADTD(Advanced Time of Arrival and Direction System)、FY-4A闪电成像仪(Lightning Mapping Imager,LMI)等多源闪电资料,针对新疆地区2019年11次典型雷暴过程,开展FY-4A LMI探测性能的初步评估,并结合FY-4A云顶温度(Cloud Top Temperature,CTT)资料,详细分析2019年7月21日强雷暴过程的闪电特征,探寻CTT与闪电活动的相关关系。结论如下:(1)FY-4A LMI闪电“组”(LMI Group,LMIG)数量约为3-DLLS的1/5、WWLLN的1.02倍、ADTD的1/3。白天,在太阳背景光影响下FY-4A LMI的探测效率有所下降,即使日出后雷暴系统有所加强,但LMIG数量并无增加趋势。(2)在2019年7月21日强雷暴过程中,3-DLLS探测的闪电时空分布与ADTD重合度较高,而WWLLN的闪电定位与前两者在时空上存在一定偏差,这主要是各系统的探测原理(WWLLN主要探测的是强地闪,ADTD主要监测地闪回击,而3-DLLS探测的是全闪)及测站布局和数量不同所致。(3)在强雷暴过程不同发展阶段,闪电发生区域的FY-4A CTT值差异较大,初始阶段、旺盛阶段和消散阶段闪电区域对应的CTT值分别为260~280 K、230~240 K和240~260 K。展开更多
文摘为加强多源闪电数据在干旱区的融合应用,利用新疆民航三维地基闪电探测系统(3-Dimension Lightning Location System,3-DLLS)、全球闪电定位网(World-Wide Lightning Location Network,WWLLN)和气象部门ADTD(Advanced Time of Arrival and Direction System)、FY-4A闪电成像仪(Lightning Mapping Imager,LMI)等多源闪电资料,针对新疆地区2019年11次典型雷暴过程,开展FY-4A LMI探测性能的初步评估,并结合FY-4A云顶温度(Cloud Top Temperature,CTT)资料,详细分析2019年7月21日强雷暴过程的闪电特征,探寻CTT与闪电活动的相关关系。结论如下:(1)FY-4A LMI闪电“组”(LMI Group,LMIG)数量约为3-DLLS的1/5、WWLLN的1.02倍、ADTD的1/3。白天,在太阳背景光影响下FY-4A LMI的探测效率有所下降,即使日出后雷暴系统有所加强,但LMIG数量并无增加趋势。(2)在2019年7月21日强雷暴过程中,3-DLLS探测的闪电时空分布与ADTD重合度较高,而WWLLN的闪电定位与前两者在时空上存在一定偏差,这主要是各系统的探测原理(WWLLN主要探测的是强地闪,ADTD主要监测地闪回击,而3-DLLS探测的是全闪)及测站布局和数量不同所致。(3)在强雷暴过程不同发展阶段,闪电发生区域的FY-4A CTT值差异较大,初始阶段、旺盛阶段和消散阶段闪电区域对应的CTT值分别为260~280 K、230~240 K和240~260 K。