Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrare...Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.展开更多
Understanding the ocean's role in the global carbon cycle and its response to environmental change requires a high spatio-temporal resolution of observation.Merging ocean color data from multiple sources is an effect...Understanding the ocean's role in the global carbon cycle and its response to environmental change requires a high spatio-temporal resolution of observation.Merging ocean color data from multiple sources is an effective way to alleviate the limitation of individual ocean color sensors(e.g.,swath width and gaps,cloudy or rainy weather,and sun glint) and to improve the temporal and spatial coverage.Since the missions of Sea-Viewing Wide Field-of-View Sensor(Sea Wi FS) and Medium-spectral Resolution Imaging Spectrometer(MERIS) ended on December 11,2010 and May 9,2012,respectively,the number of available ocean color sensors has declined,reducing the benefits of the merged ocean color data with respect to the spatial and temporal coverage.In present work,Medium Resolution Spectral Imager(MERSI)/FY-3 of China is added in merged processing and a new dataset of global ocean chlorophyll a(Chl a) concentration(2000–2015) is generated from the remote sensing reflectance(Rrs(λ)) observations of MERIS,Moderate-resolution imaging spectra-radiometer(MODIS)-AQUA,Visible infrared Imaging Radiometer(VIIRS) and MERSI.These data resources are first merged into unified remote sensing reflectance data,and then Chl a concentration data are inversed using the combined Chl a algorithm of color index-based algorithm(CIA) and OC3.The merged data products show major improvements in spatial and temporal coverage from the addition of MERSI.The average daily coverage of merged products is approximately 24% of the global ocean and increases by approximately 9% when MERSI data are added in the merging process.Sampling frequency(temporal coverage) is greatly improved by combining MERSI data,with the median sampling frequency increasing from 15.6%(57 d/a) to 29.9%(109 d/a).The merged Chl a products herein were validated by in situ measurements and comparing them with the merged products using the same approach except for omitting MERSI and Glob Colour and MEa SUREs merged data.Correlation and relative error between the new merged Chl a products and in situ observation are stable relative to the results of the merged products without the addition of MERSI.Time series of the Chl a concentration anomalies are similar to the merged products without adding MERSI and single sensors.The new merged products agree within approximately 10% of the merged Chl a product from Glob Colour and MEa SUREs.展开更多
The primary objective of this work is to develop an operational snow depth retrieval algorithm for the FengYun3B Microwave Radiation Imager(FY3B-MWRI)in China.Based on 7-year(2002–2009)observations of brightness temp...The primary objective of this work is to develop an operational snow depth retrieval algorithm for the FengYun3B Microwave Radiation Imager(FY3B-MWRI)in China.Based on 7-year(2002–2009)observations of brightness temperature by the Advanced Microwave Scanning Radiometer-EOS(AMSR-E)and snow depth from Chinese meteorological stations,we develop a semi-empirical snow depth retrieval algorithm.When its land cover fraction is larger than 85%,we regard a pixel as pure at the satellite passive microwave remote-sensing scale.A 1-km resolution land use/land cover(LULC)map from the Data Center for Resources and Environmental Sciences,Chinese Academy of Sciences,is used to determine fractions of four main land cover types(grass,farmland,bare soil,and forest).Land cover sensitivity snow depth retrieval algorithms are initially developed using AMSR-E brightness temperature data.Each grid-cell snow depth was estimated as the sum of snow depths from each land cover algorithm weighted by percentages of land cover types within each grid cell.Through evaluation of this algorithm using station measurements from 2006,the root mean square error(RMSE)of snow depth retrieval is about 5.6 cm.In forest regions,snow depth is underestimated relative to ground observation,because stem volume and canopy closure are ignored in current algorithms.In addition,comparison between snow cover derived from AMSR-E and FY3B-MWRI with Moderate-resolution Imaging Spectroradiometer(MODIS)snow cover products(MYD10C1)in January 2010 showed that algorithm accuracy in snow cover monitoring can reach 84%.Finally,we compared snow water equivalence(SWE)derived using FY3B-MWRI with AMSR-E SWE products in the Northern Hemisphere.The results show that AMSR-E overestimated SWE in China,which agrees with other validations.展开更多
为了验证风云三号D星MERSI传感器的气溶胶光学厚度(AOD)数据对地面PM_(2.5)的污染过程预报的效果,本文基于WRF-Chem(Weather Research and Forecasting model coupled with Chemistry)大气化学模式和三维变分同化方法,针对2020-02-10—2...为了验证风云三号D星MERSI传感器的气溶胶光学厚度(AOD)数据对地面PM_(2.5)的污染过程预报的效果,本文基于WRF-Chem(Weather Research and Forecasting model coupled with Chemistry)大气化学模式和三维变分同化方法,针对2020-02-10—2020-02-12中国北方地区的一次PM_(2.5)重污染过程,进行了同化和预报试验研究。同化数据来自常规地面站点的PM_(2.5)浓度数据和风云三号D星MERSI传感器的气溶胶光学厚度(AOD)数据。控制试验不同化任何资料,3组同化试验分别为仅同化地面PM_(2.5),仅同化卫星AOD,以及同时同化PM_(2.5)和卫星AOD两种资料。结果表明,3组同化试验都可以有效提高初始场准确率,以地面PM_(2.5)作为检验标准,仅同化PM_(2.5)、仅同化AOD、同时同化两种资料相对于控制试验,初始场的平均偏差分别降低54.9%、21.9%和49.0%,平均相关系数分别提升51.4%、16.0%和34.0%,平均均方根误差分别降低50.6%、17.2%和42.3%。以卫星AOD作为检验标准,3组同化试验相对于控制试验,初始场的平均偏差分别降低37.6%、78.4%和83%,平均均方根误差分别降低31.6%、62.2%和65.2%。同化后的初始场对预报有显著的改进,改进持续时间达24 h,以地面PM_(2.5)作为检验标准,同时同化两种资料的试验对24 h预报的平均偏差减少19.7%,相关系数提升8.8%,均方根误差减少17.2%;以卫星AOD作为检验标准,24 h预报的平均偏差减少40.1%,相关系数提升25.9%,均方根误差降低34.7%。试验结论为,相对于仅同化地面PM_(2.5)资料,同化风云卫星AOD资料可以提升后期预报效果。展开更多
文摘Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.
基金The National Key R&D Program of China under contract No.2016YFA0600102the National Natural Science Foundation of China under contract Nos 41506203,41476159,41506204,41606197,41471303 and 41706209the Cooperation Project of FIO and KOIST under contract No.PI-2017-03
文摘Understanding the ocean's role in the global carbon cycle and its response to environmental change requires a high spatio-temporal resolution of observation.Merging ocean color data from multiple sources is an effective way to alleviate the limitation of individual ocean color sensors(e.g.,swath width and gaps,cloudy or rainy weather,and sun glint) and to improve the temporal and spatial coverage.Since the missions of Sea-Viewing Wide Field-of-View Sensor(Sea Wi FS) and Medium-spectral Resolution Imaging Spectrometer(MERIS) ended on December 11,2010 and May 9,2012,respectively,the number of available ocean color sensors has declined,reducing the benefits of the merged ocean color data with respect to the spatial and temporal coverage.In present work,Medium Resolution Spectral Imager(MERSI)/FY-3 of China is added in merged processing and a new dataset of global ocean chlorophyll a(Chl a) concentration(2000–2015) is generated from the remote sensing reflectance(Rrs(λ)) observations of MERIS,Moderate-resolution imaging spectra-radiometer(MODIS)-AQUA,Visible infrared Imaging Radiometer(VIIRS) and MERSI.These data resources are first merged into unified remote sensing reflectance data,and then Chl a concentration data are inversed using the combined Chl a algorithm of color index-based algorithm(CIA) and OC3.The merged data products show major improvements in spatial and temporal coverage from the addition of MERSI.The average daily coverage of merged products is approximately 24% of the global ocean and increases by approximately 9% when MERSI data are added in the merging process.Sampling frequency(temporal coverage) is greatly improved by combining MERSI data,with the median sampling frequency increasing from 15.6%(57 d/a) to 29.9%(109 d/a).The merged Chl a products herein were validated by in situ measurements and comparing them with the merged products using the same approach except for omitting MERSI and Glob Colour and MEa SUREs merged data.Correlation and relative error between the new merged Chl a products and in situ observation are stable relative to the results of the merged products without the addition of MERSI.Time series of the Chl a concentration anomalies are similar to the merged products without adding MERSI and single sensors.The new merged products agree within approximately 10% of the merged Chl a product from Glob Colour and MEa SUREs.
基金supported by the National Natural Science Foundation of China(Grant Nos.41171260&41030534)
文摘The primary objective of this work is to develop an operational snow depth retrieval algorithm for the FengYun3B Microwave Radiation Imager(FY3B-MWRI)in China.Based on 7-year(2002–2009)observations of brightness temperature by the Advanced Microwave Scanning Radiometer-EOS(AMSR-E)and snow depth from Chinese meteorological stations,we develop a semi-empirical snow depth retrieval algorithm.When its land cover fraction is larger than 85%,we regard a pixel as pure at the satellite passive microwave remote-sensing scale.A 1-km resolution land use/land cover(LULC)map from the Data Center for Resources and Environmental Sciences,Chinese Academy of Sciences,is used to determine fractions of four main land cover types(grass,farmland,bare soil,and forest).Land cover sensitivity snow depth retrieval algorithms are initially developed using AMSR-E brightness temperature data.Each grid-cell snow depth was estimated as the sum of snow depths from each land cover algorithm weighted by percentages of land cover types within each grid cell.Through evaluation of this algorithm using station measurements from 2006,the root mean square error(RMSE)of snow depth retrieval is about 5.6 cm.In forest regions,snow depth is underestimated relative to ground observation,because stem volume and canopy closure are ignored in current algorithms.In addition,comparison between snow cover derived from AMSR-E and FY3B-MWRI with Moderate-resolution Imaging Spectroradiometer(MODIS)snow cover products(MYD10C1)in January 2010 showed that algorithm accuracy in snow cover monitoring can reach 84%.Finally,we compared snow water equivalence(SWE)derived using FY3B-MWRI with AMSR-E SWE products in the Northern Hemisphere.The results show that AMSR-E overestimated SWE in China,which agrees with other validations.
文摘为了验证风云三号D星MERSI传感器的气溶胶光学厚度(AOD)数据对地面PM_(2.5)的污染过程预报的效果,本文基于WRF-Chem(Weather Research and Forecasting model coupled with Chemistry)大气化学模式和三维变分同化方法,针对2020-02-10—2020-02-12中国北方地区的一次PM_(2.5)重污染过程,进行了同化和预报试验研究。同化数据来自常规地面站点的PM_(2.5)浓度数据和风云三号D星MERSI传感器的气溶胶光学厚度(AOD)数据。控制试验不同化任何资料,3组同化试验分别为仅同化地面PM_(2.5),仅同化卫星AOD,以及同时同化PM_(2.5)和卫星AOD两种资料。结果表明,3组同化试验都可以有效提高初始场准确率,以地面PM_(2.5)作为检验标准,仅同化PM_(2.5)、仅同化AOD、同时同化两种资料相对于控制试验,初始场的平均偏差分别降低54.9%、21.9%和49.0%,平均相关系数分别提升51.4%、16.0%和34.0%,平均均方根误差分别降低50.6%、17.2%和42.3%。以卫星AOD作为检验标准,3组同化试验相对于控制试验,初始场的平均偏差分别降低37.6%、78.4%和83%,平均均方根误差分别降低31.6%、62.2%和65.2%。同化后的初始场对预报有显著的改进,改进持续时间达24 h,以地面PM_(2.5)作为检验标准,同时同化两种资料的试验对24 h预报的平均偏差减少19.7%,相关系数提升8.8%,均方根误差减少17.2%;以卫星AOD作为检验标准,24 h预报的平均偏差减少40.1%,相关系数提升25.9%,均方根误差降低34.7%。试验结论为,相对于仅同化地面PM_(2.5)资料,同化风云卫星AOD资料可以提升后期预报效果。