In the past decade,the surging demand for portable electronics,electric vehicles,and stationary energy storage grids has triggered a noticeable rise in the production of Li-ion batteries(LIBs).However,this swift rise ...In the past decade,the surging demand for portable electronics,electric vehicles,and stationary energy storage grids has triggered a noticeable rise in the production of Li-ion batteries(LIBs).However,this swift rise is now hindered by relying on the use of N-methyl-2-pyrrolidone(NMP),a repro-toxic solvent,in the current cathode processing of LIBs.To overcome this challenge,here we have investigated triethyl phosphate(TEP) as a greener alternative to NMP.The compatibility with polyvinylidene fluoride(PVDF)binder,the slurry rheology,the electrode morphology and cell performance with Ni-rich cathodes are characterized.The results show that TEP-based samples possess indistinguishable characteristics in all as pects studied when compared with NMP,revealing that TEP is a promising substitute for NMP in processing Ni-rich cathodes.It is anticipated that this green solvent,TEP,will draw attention from industry in the real-world LIB application in the future.展开更多
Photoelectorchemical(PEC) water splitting is an attractive approach for producing sustainable and environment-friendly hydrogen. An efficient PEC process is rooted in appropriate semiconductor materials, which shoul...Photoelectorchemical(PEC) water splitting is an attractive approach for producing sustainable and environment-friendly hydrogen. An efficient PEC process is rooted in appropriate semiconductor materials, which should possess small bandgap to ensure wide light harvest, facile charge separation to allow the generated photocharges migrating to the reactive sites and highly catalytic capability to fully utilize the separated photocharges. Proper electrode fabrication method is of equal importance for promoting charge transfer and accelerating surface reactions in the electrodes. Moreover,powerful characterization method can shed light on the complex PEC process and provide deep understanding of the rate-determining step for us to improve the PEC systems further. Targeting on high solar conversion efficiency, here we provide a review on the development of PEC water splitting in the aspect of materials exploring, fabrication method and characterization. It is expected to provide some fundamental insight of PEC and inspire the design of more effective PEC systems.展开更多
Hydrogen peroxide(H_(2)O_(2))is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment.The in-situ H_(2)O_(2)production via a two-electron oxygen reduction reaction(ORR)will br...Hydrogen peroxide(H_(2)O_(2))is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment.The in-situ H_(2)O_(2)production via a two-electron oxygen reduction reaction(ORR)will bring H_(2)O_(2)beyond its current applications.The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area.Herein,the most up-to-date findings in theoretical predictions,synthetic methodologies,and experimental investigations of carbon-based catalysts are systematically summarized.Various electrode fabrication and modification methods were also introduced and compared,along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode.In addition,our current understanding of the challenges,future directions,and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.展开更多
文摘In the past decade,the surging demand for portable electronics,electric vehicles,and stationary energy storage grids has triggered a noticeable rise in the production of Li-ion batteries(LIBs).However,this swift rise is now hindered by relying on the use of N-methyl-2-pyrrolidone(NMP),a repro-toxic solvent,in the current cathode processing of LIBs.To overcome this challenge,here we have investigated triethyl phosphate(TEP) as a greener alternative to NMP.The compatibility with polyvinylidene fluoride(PVDF)binder,the slurry rheology,the electrode morphology and cell performance with Ni-rich cathodes are characterized.The results show that TEP-based samples possess indistinguishable characteristics in all as pects studied when compared with NMP,revealing that TEP is a promising substitute for NMP in processing Ni-rich cathodes.It is anticipated that this green solvent,TEP,will draw attention from industry in the real-world LIB application in the future.
基金supported by the Australian Research Council through its Discovery Project (DP)Federation Fellowship (FF) Program
文摘Photoelectorchemical(PEC) water splitting is an attractive approach for producing sustainable and environment-friendly hydrogen. An efficient PEC process is rooted in appropriate semiconductor materials, which should possess small bandgap to ensure wide light harvest, facile charge separation to allow the generated photocharges migrating to the reactive sites and highly catalytic capability to fully utilize the separated photocharges. Proper electrode fabrication method is of equal importance for promoting charge transfer and accelerating surface reactions in the electrodes. Moreover,powerful characterization method can shed light on the complex PEC process and provide deep understanding of the rate-determining step for us to improve the PEC systems further. Targeting on high solar conversion efficiency, here we provide a review on the development of PEC water splitting in the aspect of materials exploring, fabrication method and characterization. It is expected to provide some fundamental insight of PEC and inspire the design of more effective PEC systems.
基金This research was financially supported by the National Natural Science Foundation of China(No.52070140)the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.HC202151)the Postdoctoral Science Foundation of China(2021M702439).
文摘Hydrogen peroxide(H_(2)O_(2))is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment.The in-situ H_(2)O_(2)production via a two-electron oxygen reduction reaction(ORR)will bring H_(2)O_(2)beyond its current applications.The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area.Herein,the most up-to-date findings in theoretical predictions,synthetic methodologies,and experimental investigations of carbon-based catalysts are systematically summarized.Various electrode fabrication and modification methods were also introduced and compared,along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode.In addition,our current understanding of the challenges,future directions,and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.