期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research and Application of the Mathematic Model for the Washing Shrinkage of Woven Fabric 被引量:1
1
作者 傅菊芬 白伦 《Journal of Donghua University(English Edition)》 EI CAS 2007年第2期161-164,172,共5页
Having analyzed the relationships between washing shrinkage and weaving technique, parameters, material properties of woven fabrics and studied the shrinkage mechanism and its mathematical model of the plain fabric, r... Having analyzed the relationships between washing shrinkage and weaving technique, parameters, material properties of woven fabrics and studied the shrinkage mechanism and its mathematical model of the plain fabric, researchers set up a shrinkage model of the twills and satins and proposed a method for calculating the washing shrinkage based on weaving technique and parameters of fabrics. Shrinkage experiments of silk habotai, silk twill and silk satin fabrics were performed. The results were compared with those of the theoretical computations, and theoretical method is reliable. 展开更多
关键词 twill fabric satin fabric fabric parameter washing shrinkage mathematical model
下载PDF
Woven fabric triboelectric nanogenerators for human-computer interaction and physical health monitoring
2
作者 Yu Miao Mengjuan Zhou +7 位作者 Jia Yi Yanyan Wang Guangjin Tian Hongxia Zhang Wenlong Huang Wenhao Wang Ronghui Wu Liyun Ma 《Nano Research》 SCIE EI CSCD 2024年第6期5540-5548,共9页
Triboelectric nanogenerator(TENG)converts mechanical energy into valuable electrical energy,offering a solution for future energy needs.As an indispensable part of TENG,textile TENG(T-TENG)has incredible advantages in... Triboelectric nanogenerator(TENG)converts mechanical energy into valuable electrical energy,offering a solution for future energy needs.As an indispensable part of TENG,textile TENG(T-TENG)has incredible advantages in harvesting biomechanical energy and physiological signal monitoring.However,the application of T-TENG is restricted,partly because the fabric structure parameter and structure on T-TENG performance have not been fully exploited.This study comprehensively investigates the effect of weaving structure on fabric TENGs(F-TENGs)for direct-weaving yarn TENGs and post-coating fabric TENGs.For direct-weaving F-TENGs,a single-yarn TENG(Y-TENG)with a core-sheath structure is fabricated using conductive yarn as the core layer yarn and polytetrafluoroethylene(PTFE)filaments as the sheath yarn.Twelve fabrics with five different sets of parameters were designed and investigated.For post-coating F-TENGs,fabrics with weaving structures of plain,twill,satin,and reinforced twill were fabricated and coated with conductive silver paint.Overall,the twill F-TENGs have the best electrical outputs,followed by the satin F-TENGs and plain weave F-TENGs.Besides,the increase of the Y-TENG gap spacing was demonstrated to improve the electrical output performance.Moreover,T-TENGs are demonstrated for human-computer interaction and self-powered real-time monitoring.This systematic work provides guidance for the future T-TENG’s design. 展开更多
关键词 single-yarn triboelectric nanogenerators woven fabric triboelectric nanogenerators fabric weaving structures and parameters human-computer interaction physical health monitoring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部