The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is pe...The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.展开更多
The sensing characteristics of irradiated fiber Bragg gratings(FBGs)and Fabry-Perot interferometers(FPIs)were investigated under a 2MGy dose of gamma radiation.The study found that the pressure sensitivity of FP senso...The sensing characteristics of irradiated fiber Bragg gratings(FBGs)and Fabry-Perot interferometers(FPIs)were investigated under a 2MGy dose of gamma radiation.The study found that the pressure sensitivity of FP sensors after irradiation was stable,while the temperature sensitivity of FBG sensors was unstable,and both wavelengths displayed a shift.These findings offer the possibility for the application of FP pressure sensors in the gamma radiation environments,and FBG sensors require further research to be suitable for application in the nuclear radiation environments.展开更多
This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot ...This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot interferometers and fiber gratings.展开更多
SU(1,1) interferometers play an important role in quantum metrology. Previous studies focus on various inputs and detection strategies with symmetric gain. In this paper, we analyze a modified SU(1,1) interferometer u...SU(1,1) interferometers play an important role in quantum metrology. Previous studies focus on various inputs and detection strategies with symmetric gain. In this paper, we analyze a modified SU(1,1) interferometer using asymmetric gain. Two vacuum states are used as the input and on–off detection is performed at the output. In a lossless scenario,symmetric gain is the optimal selection and the corresponding phase sensitivity can achieve the Heisenberg limit as well as the quantum Cramer–Rao bound. In addition, we analyze the phase sensitivity with symmetric gain in the lossy scenario.The phase sensitivity is sensitive to internal losses but extremely robust against external losses. We address the optimal asymmetric gain and the results suggest that this method can improve the tolerance to internal losses. Our work may contribute to the practical development of quantum metrology.展开更多
We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (...We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/με. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.展开更多
Periodic resistance oscillations in Fabry-Perot quantum Hall interferometers are observed at integer filling factors of the constrictions, fc=1, 2, 3, 4, 5 and 6. Rather than the Aharonov-Bohm interference, these osci...Periodic resistance oscillations in Fabry-Perot quantum Hall interferometers are observed at integer filling factors of the constrictions, fc=1, 2, 3, 4, 5 and 6. Rather than the Aharonov-Bohm interference, these oscillations are attributed to the Coulomb interactions between interfering edge states and localized states in the central island of an interferometer, as confirmed by the observation of a positive slope for the lines of constant oscillation phase in the image plot of resistance in the 13 Vs plane. Similar resistance oscillations are also observed when the area A of the center regime and the backseattering probability of interfering edge states are varied, by changing the side-gate voltages and the configuration of the quantum point contacts, respectively. The oscillation amplitudes decay exponentially with temperature in the ramge of 40mK〈 T ≤ 130 mK, with a characteristic temperature T0 -25 mK, consistent with recent theoretical and experimental works.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other ...A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other existing interferometers,such as Michelson,Mach-Zehnder and Young's double-slit interferometers,is that the two interfering paths are asymmetrical in the Delta interferometer.The visibility of the first-order interference pattern observed in the Delta interferometer is dependent on the polarization of the incidental light.Optical coherence theory is employed to interpret this phenomenon and single-mode continuous-wave laser light is employed to verify the theoretical predictions.The theoretical and experimental results are consistent.The Delta interferometer is a perfect tool to study the reflection of electromagnetic fields in different polarizations and may find applications in polarization-sensitive scenarios.展开更多
Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 ...Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 oblique channels)is under development on the HL-3tokamak by using the formic-acid laser(HCOOH,f=694 GHz).In order to investigate the boundary electron density activity during the divertor discharge,three horizontal interferometry channels located at Z=-97,-76,76.5 cm have been successfully developed on HL-3 in 2023,and put into operation in recent experimental campaign,with a time resolution of<1.0μs and lineintegrated electron density resolution of~7.0×10^(16) m^(-2).This paper mainly focuses on the optical design of the three-channel interferometry system,as well as optical elements and recent experimental result on HL-3.展开更多
Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been...Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.展开更多
A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged el...A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged electron densities accurately.In contrast to conventional interferometers,the DI does not require substantial vibration isolations or compensating systems to reduce the impact of vibrations in the optical path.It also employs a ratio of modulation amplitudes,ensuring it remains immune to the variations in detected intensities.Without a variation compensation system,the DI system on EAST reaches a density resolution of less than1.8×10^(-2)πrad and a temporal resolution of 20μs.The measurements made by the POlarimeterINTerferometer(POINT)system and the far-infrared hydrogen cyanide(HCN)interferometer are remarkably consistent with the DI’s results.The possibility of fringe jumps and the impact of refraction in high-density discharge can be significantly decreased using a shorter wavelength laser source.A rapid density change of 3×10^(19)m^(-3)during 0.15 s has been measured accurately in shot No.114755 of EAST.Additionally,the DI system demonstrates dependability and stability under 305 s long-pulse discharges in shot No.122054.展开更多
An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold fil...An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.展开更多
A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young...A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.展开更多
We investigated the sensitivities of atom interferometers in the usual fringe-scanning method (FSM) versus the fringe- locking method (FLM). The theoretical analysis shows that for typical noises in atom interfero...We investigated the sensitivities of atom interferometers in the usual fringe-scanning method (FSM) versus the fringe- locking method (FLM). The theoretical analysis shows that for typical noises in atom interferometers, the FSM will degrade the sensitivity while the FLM does not. The sensitivity-improvement factor of the FLM over the FSM depends on the type of noises, which is validated by numerical simulations. The detailed quantitative analysis on this fundamental issue is presented, and our analysis is readily extendable to other kinds of noises as well as other fringe shapes in addition to a cosine one.展开更多
According to the orthodox interpretation of quantum physics, wave-particle duality(WPD) is the intrinsic property of all massive microscopic particles. All gedanken or realistic experiments based on atom interferomete...According to the orthodox interpretation of quantum physics, wave-particle duality(WPD) is the intrinsic property of all massive microscopic particles. All gedanken or realistic experiments based on atom interferometers(AI) have so far upheld the principle of WPD, either by the mechanism of the Heisenberg’s position-momentum uncertainty relation or by quantum entanglement. In this paper, we propose and make a systematic quantum mechanical analysis of several schemes of weak-measurement atom interferometer(WM-AI) and compare them with the historical schemes of strongmeasurement atom interferometer(SM-AI), such as Einstein’s recoiling slit and Feynman’s light microscope. As the critical part of these WM-AI setups, a weak-measurement path detector(WM-PD) deliberately interacting with the atomic internal electronic quantum states is designed and used to probe the which-path information of the atom, while only inducing negligible perturbation of the atomic center-of-mass motion. Another instrument that is used to directly interact with the atomic center-of-mass while being insensitive to the internal electronic quantum states is used to monitor the atomic centerof-mass interference pattern. Two typical schemes of WM-PD are considered. The first is the micromaser-cavity path detector, which allows us to probe the spontaneously emitted microwave photon from the incoming Rydberg atom in its excited electronic state and record unanimously the which-path information of the atom. The second is the optical-lattice Bragg-grating path detector, which can split the incoming atom beam into two different directions as determined by the internal electronic state and thus encode the which-path information of the atom into the internal states of the atom. We have used standard quantum mechanics to analyze the evolution of the atomic center-of-mass and internal electronic state wave function by directly solving Schr¨odinger’s equation for the composite atom-electron-photon system in these WM-AIs. We have also compared our analysis with the theoretical and experimental studies that have been presented in the previous literature. The results show that the two sets of instruments can work separately, collectively, and without mutual exclusion to enable simultaneous observation of both wave and particle nature of the atoms to a much higher level than the historical SM-AIs, while avoiding degradation from Heisenberg’s uncertainty relation and quantum entanglement. We have further investigated the space–time evolution of the internal electronic quantum state, as well as the combined atom–detector system and identified the microscopic origin and role of quantum entanglement, as emphasized in numerous previous studies. Based on these physics insights and theoretical analyses, we have proposed several new WM-AI schemes that can help to elucidate the puzzling physics of the WPD of the atoms. The principle of WM-AI scheme and quantum mechanical analyses made in this work can be directly extended to examine the principle of WPD for other massive particles.展开更多
Many delayed-choice experiments based on Mach-Zehnder interferometers (MZI) have been considered and made to address the fundamental problem of wave-particle duality. Conventional wisdom long holds that by inserting...Many delayed-choice experiments based on Mach-Zehnder interferometers (MZI) have been considered and made to address the fundamental problem of wave-particle duality. Conventional wisdom long holds that by inserting or removing the second beam splitter (BS2) in a controllable way, microscopic particles (photons, electrons, etc.) transporting within the MZI can lie in the quantum superposition of the wave and particle state as ψ= aw ψ wave + ap ψ particle. Here we present an alternative interpretation to these delayed-choice experiments. We notice that as the BS2 is purely classical, the inserting and removing operation of the BS2 imposes a time- modulated Hamiltonian H mod (t) = a(t)Hin + b(t)Hout, instead of a quantum superposition of H in and Hour as H = awHin + apHout, to act upon the incident wave function. Solution of this quantum scattering problem, rather than the long held quantum eigen-problem yields a synchronically time-modulated output wave function as ψ mod (t) = a(t) ψ wave +b(t) ψ particle, instead of the stationary quantum superposition state ψ = aw ψ wave + ap ψ particle. As a result, the probability of particle output from the MZI behaves as if they are in the superposition of the wave and particle state when many events over time accumulation are counted and averaged. We expect that these elementary but insightful analyses will shed a new light on exploring basic physics beyond the long-held wisdom of wave-particle duality and the principle of complementarity.展开更多
文摘The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.
基金This work was funded by the National Science Foundation of China(NCSF)(Grant No.51875091)the Study and Application of Full-model Impact Dynamic Fretting Damage Test System in the Extreme Environment(Grant No.51627806)+3 种基金Research on Application of Optical Fiber Sensing in Nuclear Power(Grant No.180046)Optical Fiber Sensing and Processing Prototype for Nuclear Field Key Parameter Measurement(Grant No.191091)Data Acquisition and Post-processing Software Development for Integrated Fiber Optic Sensors(Grant No.190167)the State 111 Project(Grant No.B14039).
文摘The sensing characteristics of irradiated fiber Bragg gratings(FBGs)and Fabry-Perot interferometers(FPIs)were investigated under a 2MGy dose of gamma radiation.The study found that the pressure sensitivity of FP sensors after irradiation was stable,while the temperature sensitivity of FBG sensors was unstable,and both wavelengths displayed a shift.These findings offer the possibility for the application of FP pressure sensors in the gamma radiation environments,and FBG sensors require further research to be suitable for application in the nuclear radiation environments.
文摘This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot interferometers and fiber gratings.
基金Project supported by Leading Innovative Talents in Changzhou (Grant No.CQ20210107)Shuangchuang Ph.D Award (Grant No.JSSCBS20210915)+1 种基金Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No.21KJB140007)the National Natural Science Foundation of China (Grant No.12104193)。
文摘SU(1,1) interferometers play an important role in quantum metrology. Previous studies focus on various inputs and detection strategies with symmetric gain. In this paper, we analyze a modified SU(1,1) interferometer using asymmetric gain. Two vacuum states are used as the input and on–off detection is performed at the output. In a lossless scenario,symmetric gain is the optimal selection and the corresponding phase sensitivity can achieve the Heisenberg limit as well as the quantum Cramer–Rao bound. In addition, we analyze the phase sensitivity with symmetric gain in the lossy scenario.The phase sensitivity is sensitive to internal losses but extremely robust against external losses. We address the optimal asymmetric gain and the results suggest that this method can improve the tolerance to internal losses. Our work may contribute to the practical development of quantum metrology.
基金This work is supported by the Nature Science Foundation Project of CQ CSTC under Grant No.cstc2012jjA4007. Assistances and good suggestions of Associate Prof. M. Deng in Chongqing University are appreciated.
文摘We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/με. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.
基金Supported by the National Basic Research Program of China under Grant No 2014CB920904the National Natural Science Foundation of China under Grant No 91221203the Strategic Priority Research Program B of the Chinese Academy of Sciences under Grant No XDB07010200
文摘Periodic resistance oscillations in Fabry-Perot quantum Hall interferometers are observed at integer filling factors of the constrictions, fc=1, 2, 3, 4, 5 and 6. Rather than the Aharonov-Bohm interference, these oscillations are attributed to the Coulomb interactions between interfering edge states and localized states in the central island of an interferometer, as confirmed by the observation of a positive slope for the lines of constant oscillation phase in the image plot of resistance in the 13 Vs plane. Similar resistance oscillations are also observed when the area A of the center regime and the backseattering probability of interfering edge states are varied, by changing the side-gate voltages and the configuration of the quantum point contacts, respectively. The oscillation amplitudes decay exponentially with temperature in the ramge of 40mK〈 T ≤ 130 mK, with a characteristic temperature T0 -25 mK, consistent with recent theoretical and experimental works.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
基金Project supported by the Shanxi Key Research and Development Project(Grant No.2019ZDLGY09-08)Shanxi Nature and Science Basic Research Project(Grant No.2019JLP-18).
文摘A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other existing interferometers,such as Michelson,Mach-Zehnder and Young's double-slit interferometers,is that the two interfering paths are asymmetrical in the Delta interferometer.The visibility of the first-order interference pattern observed in the Delta interferometer is dependent on the polarization of the incidental light.Optical coherence theory is employed to interpret this phenomenon and single-mode continuous-wave laser light is employed to verify the theoretical predictions.The theoretical and experimental results are consistent.The Delta interferometer is a perfect tool to study the reflection of electromagnetic fields in different polarizations and may find applications in polarization-sensitive scenarios.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE03020004,2018YFE0304102 and 2019YFE03020002)the Department of Science and Technology of Sichuan Province(No.2020YJ0463)。
文摘Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 oblique channels)is under development on the HL-3tokamak by using the formic-acid laser(HCOOH,f=694 GHz).In order to investigate the boundary electron density activity during the divertor discharge,three horizontal interferometry channels located at Z=-97,-76,76.5 cm have been successfully developed on HL-3 in 2023,and put into operation in recent experimental campaign,with a time resolution of<1.0μs and lineintegrated electron density resolution of~7.0×10^(16) m^(-2).This paper mainly focuses on the optical design of the three-channel interferometry system,as well as optical elements and recent experimental result on HL-3.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-7301-001228)the Major Special Science and Technology Project of Anhui Province(No.912188707023)。
文摘A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged electron densities accurately.In contrast to conventional interferometers,the DI does not require substantial vibration isolations or compensating systems to reduce the impact of vibrations in the optical path.It also employs a ratio of modulation amplitudes,ensuring it remains immune to the variations in detected intensities.Without a variation compensation system,the DI system on EAST reaches a density resolution of less than1.8×10^(-2)πrad and a temporal resolution of 20μs.The measurements made by the POlarimeterINTerferometer(POINT)system and the far-infrared hydrogen cyanide(HCN)interferometer are remarkably consistent with the DI’s results.The possibility of fringe jumps and the impact of refraction in high-density discharge can be significantly decreased using a shorter wavelength laser source.A rapid density change of 3×10^(19)m^(-3)during 0.15 s has been measured accurately in shot No.114755 of EAST.Additionally,the DI system demonstrates dependability and stability under 305 s long-pulse discharges in shot No.122054.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61735014,61327012,and 61275088)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.08JZ58)the Northwest University Graduate Innovation and Creativity Funds,China(Grant No.YZZ17088)
文摘An ultrasonic sensitivity-improved fiber-optic Fabry-Perot interferometer (FPI) is proposed and employed for ultra- sonic imaging of seismic physical models (SPMs). The FPI comprises a flexible ultra-thin gold film and the end face of a graded-index multimode fiber (MMF), both of which are enclosed in a ceramic tube. The MMF in a specified length can collimate the diverged light beam and compensate for the light loss inside the air cavity, leading to an increased spectral fringe visibility and thus a steeper spectral slope. By using the spectral sideband filtering technique, the collimated FP1 shows an improved ultrasonic response. Moreover, two-dimensional images of two SPMs are achieved in air by recon- structing the pulse-echo signals through using the time-of-flight approach. The proposed sensor with easy fabrication and compact size can be a good candidate for high-sensitivity and high-precision nondestructive testing of SPMs.
基金supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of ChinaChinese Academy of Sciences
文摘A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41127002,11574099,41504034,and 11474115)the National Basic Research Program of China(Grant No.2010CB832806)
文摘We investigated the sensitivities of atom interferometers in the usual fringe-scanning method (FSM) versus the fringe- locking method (FLM). The theoretical analysis shows that for typical noises in atom interferometers, the FSM will degrade the sensitivity while the FLM does not. The sensitivity-improvement factor of the FLM over the FSM depends on the type of noises, which is validated by numerical simulations. The detailed quantitative analysis on this fundamental issue is presented, and our analysis is readily extendable to other kinds of noises as well as other fringe shapes in addition to a cosine one.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFA 0306200)the National Natural Science Foundation of China(Grant No.11434017)the Guangdong Innovative and Entrepreneurial Research Team Program,China(Grant No.2016ZT06C594)
文摘According to the orthodox interpretation of quantum physics, wave-particle duality(WPD) is the intrinsic property of all massive microscopic particles. All gedanken or realistic experiments based on atom interferometers(AI) have so far upheld the principle of WPD, either by the mechanism of the Heisenberg’s position-momentum uncertainty relation or by quantum entanglement. In this paper, we propose and make a systematic quantum mechanical analysis of several schemes of weak-measurement atom interferometer(WM-AI) and compare them with the historical schemes of strongmeasurement atom interferometer(SM-AI), such as Einstein’s recoiling slit and Feynman’s light microscope. As the critical part of these WM-AI setups, a weak-measurement path detector(WM-PD) deliberately interacting with the atomic internal electronic quantum states is designed and used to probe the which-path information of the atom, while only inducing negligible perturbation of the atomic center-of-mass motion. Another instrument that is used to directly interact with the atomic center-of-mass while being insensitive to the internal electronic quantum states is used to monitor the atomic centerof-mass interference pattern. Two typical schemes of WM-PD are considered. The first is the micromaser-cavity path detector, which allows us to probe the spontaneously emitted microwave photon from the incoming Rydberg atom in its excited electronic state and record unanimously the which-path information of the atom. The second is the optical-lattice Bragg-grating path detector, which can split the incoming atom beam into two different directions as determined by the internal electronic state and thus encode the which-path information of the atom into the internal states of the atom. We have used standard quantum mechanics to analyze the evolution of the atomic center-of-mass and internal electronic state wave function by directly solving Schr¨odinger’s equation for the composite atom-electron-photon system in these WM-AIs. We have also compared our analysis with the theoretical and experimental studies that have been presented in the previous literature. The results show that the two sets of instruments can work separately, collectively, and without mutual exclusion to enable simultaneous observation of both wave and particle nature of the atoms to a much higher level than the historical SM-AIs, while avoiding degradation from Heisenberg’s uncertainty relation and quantum entanglement. We have further investigated the space–time evolution of the internal electronic quantum state, as well as the combined atom–detector system and identified the microscopic origin and role of quantum entanglement, as emphasized in numerous previous studies. Based on these physics insights and theoretical analyses, we have proposed several new WM-AI schemes that can help to elucidate the puzzling physics of the WPD of the atoms. The principle of WM-AI scheme and quantum mechanical analyses made in this work can be directly extended to examine the principle of WPD for other massive particles.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632704the National Natural Science Foundation of China under Grant No 11434017
文摘Many delayed-choice experiments based on Mach-Zehnder interferometers (MZI) have been considered and made to address the fundamental problem of wave-particle duality. Conventional wisdom long holds that by inserting or removing the second beam splitter (BS2) in a controllable way, microscopic particles (photons, electrons, etc.) transporting within the MZI can lie in the quantum superposition of the wave and particle state as ψ= aw ψ wave + ap ψ particle. Here we present an alternative interpretation to these delayed-choice experiments. We notice that as the BS2 is purely classical, the inserting and removing operation of the BS2 imposes a time- modulated Hamiltonian H mod (t) = a(t)Hin + b(t)Hout, instead of a quantum superposition of H in and Hour as H = awHin + apHout, to act upon the incident wave function. Solution of this quantum scattering problem, rather than the long held quantum eigen-problem yields a synchronically time-modulated output wave function as ψ mod (t) = a(t) ψ wave +b(t) ψ particle, instead of the stationary quantum superposition state ψ = aw ψ wave + ap ψ particle. As a result, the probability of particle output from the MZI behaves as if they are in the superposition of the wave and particle state when many events over time accumulation are counted and averaged. We expect that these elementary but insightful analyses will shed a new light on exploring basic physics beyond the long-held wisdom of wave-particle duality and the principle of complementarity.