A tunable single-passband microwave photonic filter is proposed and demonstrated, based on a laser diode (LD) array with multiple optical carriers and a Fabry-Perot (F-P) laser diode. Multiple optical carriers in conj...A tunable single-passband microwave photonic filter is proposed and demonstrated, based on a laser diode (LD) array with multiple optical carriers and a Fabry-Perot (F-P) laser diode. Multiple optical carriers in conjunction with the F-P LD will realize a filter with multiple passbands. By adjusting the wavelengths of the multiple optical carriers, multiple passbands are merged into a single passband with a broadened bandwidth. By varying the number of the optical carrier, the bandwidth can be adjusted. The central frequency can be tuned by adjusting the wavelength of the multiple optical carriers simultaneously. A single-passband filter implemented by two optical carriers is experimentally demonstrated.展开更多
In the past few years,many groups have focused on the research and development of GaN-based ultraviolet laser diodes(UV LDs).Great progresses have been achieved even though many challenges exist.In this article,we ana...In the past few years,many groups have focused on the research and development of GaN-based ultraviolet laser diodes(UV LDs).Great progresses have been achieved even though many challenges exist.In this article,we analyze the challenges of developing GaN-based ultraviolet laser diodes,and the approaches to improve the performance of ultraviolet laser diode are reviewed.With these techniques,room temperature(RT)pulsed oscillation of AlGaN UVA(ultraviolet A)LD has been realized,with a lasing wavelength of 357.9 nm.Combining with the suppression of thermal effect,the high output power of 3.8 W UV LD with a lasing wavelength of 386.5 nm was also fabricated.展开更多
In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power a...In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.展开更多
In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio ...In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.展开更多
A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning...A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning range can be up to 9 run.展开更多
We present a compact injection-locking diode laser module to generate 671 nm laser light with a high output power up to 150 m W.The module adopts a master-slave injection-locking scheme,and the injection-locking state...We present a compact injection-locking diode laser module to generate 671 nm laser light with a high output power up to 150 m W.The module adopts a master-slave injection-locking scheme,and the injection-locking state is monitored using the transmission spectrum from a Fabry-Perot interferometer.Beat frequency spectrum measurement shows that the injection-locked slave laser has no other frequency components within the 150-MHz detection bandwidth.It is found that without additional electronic feedback,the slave laser can follow the master laser over a wide range of 6 GHz.All the elements of the module are commercially available,which favors fast construction of a complete 671-nm laser system for the preparation of cold^(6)Li atoms with only one research-grade diode laser as the seeding source.展开更多
A new radio-over-fiber system for use in hybrid fiber-wireless access networks is proposed and experimentally demonstrated,which is based on cascaded injection-locked Fabry-Perot laser diodes.It is verified that the p...A new radio-over-fiber system for use in hybrid fiber-wireless access networks is proposed and experimentally demonstrated,which is based on cascaded injection-locked Fabry-Perot laser diodes.It is verified that the proposed technique is able to achieve a good suppression ratio of an optical carrier suppressed(OCS) signal simultaneously through a programmable optical filter and by use of optical injection locking technique.A 60 GHz carrier with downlink baseband data has been generated and down converted to baseband signal in order to be characterized in our laboratory.展开更多
A piece of multimode optical fiber with a low num er ical aperture (NA) is used as an inexpensive microlens to collimate the output r adiation of a laser diode bar in the high numerical aperture (NA) direction.The em...A piece of multimode optical fiber with a low num er ical aperture (NA) is used as an inexpensive microlens to collimate the output r adiation of a laser diode bar in the high numerical aperture (NA) direction.The emissions of the laser diode bar are coupled into multimode fiber array.The radi ation from individual ones of emitter regions is optically coupled into individu al ones of fiber array.Total coupling efficiency and fiber output power are 75% and 15W,respectively.展开更多
Moisture measurement is of great needs in semiconductor industry, combustion diagnosis, meteorology, and atmospheric studies. We present an optical hygrometer based on cavity ring-down spectroscopy (CRDS). By using ...Moisture measurement is of great needs in semiconductor industry, combustion diagnosis, meteorology, and atmospheric studies. We present an optical hygrometer based on cavity ring-down spectroscopy (CRDS). By using different absorption lines of H20 in the 1.56 and 1.36 gm regions, we are able to determine the relative concentration (mole fraction) of water vapor from a few percent down to the 10-12 level. The quantitative accuracy is examined by comparing the CRDS hygrometer with a commercial chilled-mirror dew-point meter. The high sensitivity of the CRDS instrument allows a water detection limit of 8 pptv.展开更多
The 808nm laser diodes with a broad waveguide are designed and fabricated.The thickness of the Al_ 0.35 - Ga_ 0.65 As waveguide is increased to 0.9μm.In order to suppress the super modes,the thickness of the A...The 808nm laser diodes with a broad waveguide are designed and fabricated.The thickness of the Al_ 0.35 - Ga_ 0.65 As waveguide is increased to 0.9μm.In order to suppress the super modes,the thickness of the Al_ 0.55 Ga_ 0.45 As cladding layers is reduced to only 0.7μm while keeping the transverse radiation losses of the fundamental mode below 0.2cm -1 .The structures are grown by metal organic chemical vapour deposition.The devices show excellent performances.The maximum output power of 10.2W in the 100μm broad-area laser diodes is obtained.展开更多
The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature ...The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature is reported. The full width at half maximum of the band edge emitting peaks of the photoluminescence (PL) spectra at room temperature is less than 35meV for most of the multi-layer QD samples,revealing good,reproducible MBE growth conditions. Moreover,atomic force microscopy images show that the QD surface density can be controlled in the range from 1×10^10 to 7 ×10^10 cm^-2 . The best PL properties are obtained at a QD surface density of about 4×10^10cm^-2. Edge emitting lasers containing 3 and 5 stacked QD layers as the active layer lasing at room temperature in continuous wave operation mode are reported.展开更多
Diode pumped monolithic nonplanar ring laser has been developed, yielding single frequency laser and has the advantages of compactness, reliability and high efficiency. Its principles are given in detail and a monolit...Diode pumped monolithic nonplanar ring laser has been developed, yielding single frequency laser and has the advantages of compactness, reliability and high efficiency. Its principles are given in detail and a monolithic nonplanar ring laser is designed. As a result, a laser of hundreds milliwatts cw single frequency output was built up, placed in a magnetic field and pumped by LD. The optical conversion efficiency was more than 15% and the slope efficiency more than 30%. The laser beam had a good quality, with M 2 about 1 2.展开更多
Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the...Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.展开更多
Studies on first GaN-based blue-violet laser diodes(LDs) in China mainland are reported.High quality GaN materials as well as GaN-based quantum wells laser structures are grown by metal-organic chemical vapor depositi...Studies on first GaN-based blue-violet laser diodes(LDs) in China mainland are reported.High quality GaN materials as well as GaN-based quantum wells laser structures are grown by metal-organic chemical vapor deposition method.The X-ray double-crystal diffraction rocking curve measurements show the full-width half maximum of 180″ and 185″ for (0002) symmetric reflection and (10 12) skew reflection,respectively.A room temperature mobility of 850cm2/(V·s) is obtained for a 3μm thick GaN film.Gain guided and ridge geometry waveguide laser diodes are fabricated with cleaved facet mirrors at room temperature under pulse current injection.The lasing wavelength is 405 9nm.A threshold current density of 5kA/cm2 and an output light power over 100mW are obtained for ridge geometry waveguide laser diodes.展开更多
Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate la...Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate laser diodes at 155Mb/s (STM-1),622Mb/s (STM-4) with adjustable modulation current from 0 to 50mA for an equivalent 50Ω load.The maximum modulation voltage is over 2.5V pp corresponding to a 3V DC bias for output stage.The time range of rise and fall from 360ps to 471ps is measured from the output voltage pulse.The RMS jitter is no more than 30ps for four bit rates.The power consumption is less than 410mW under a power supply voltage of 5V.According to the experimental results,the laser diode driver achieves the same level as their counterparts worldwide.展开更多
A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dual-waveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The ...A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dual-waveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB.These devices exhibit a 3dB modulation bandwidth of 15.0GHz,and modulator DC extinction ratios of 16.2dB.The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3°×18.0°,respectively,resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.展开更多
A DC-10Mb/s laser diode driver,compatible with TTL and CMOS levels,is presented. The optical power corresponding to‘1' and ‘0' can be set independently with resistors off-chip and stabilized with a closed loop. A ...A DC-10Mb/s laser diode driver,compatible with TTL and CMOS levels,is presented. The optical power corresponding to‘1' and ‘0' can be set independently with resistors off-chip and stabilized with a closed loop. A novel peak-to- peak optical power monitor and stabilization mechanism is introduced. The circuit, fabricated in a CSMC 0. 5μm mixed signal CMOS process, can provide 120mA maximum drive current and 0. 6dB extinction ration fluctuation over - 20 + 80℃ ,which is independent of input pattern.展开更多
A novel 1 55μm laser diode with spot size converter is designed and fabricated using conventional photolithography and chemical wet etching process.For the laser diode,a ridge double core structure is employed.For...A novel 1 55μm laser diode with spot size converter is designed and fabricated using conventional photolithography and chemical wet etching process.For the laser diode,a ridge double core structure is employed.For the spot size converter,a buried ridge double core structure is incorporated.The laterally tapered active core is designed and optically combined with the thin and wide passive core to control the size of mode.The laser diode threshold current is measured to be 40mA together with high slop efficiency of 0 35W/A.The beam divergence angles in the horizontal and vertical directions are as small as 14 89°×18 18°,respectively,resulting in low coupling losses with a cleaved optical fiber (3dB loss).展开更多
By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at ...By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at about 820nm with a single longitudinal mode. The Al-free grating surface permits the re-growth of a high-quality cladding layer that yields excellent device performance. The threshold current of these laser diodes is 57mA,and the slope efficiency is about 0.32mW/mA.展开更多
Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and ...Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61302026,61275067 and 61575034the Jiangsu Natural Science Foundation under Grant No BK2012432
文摘A tunable single-passband microwave photonic filter is proposed and demonstrated, based on a laser diode (LD) array with multiple optical carriers and a Fabry-Perot (F-P) laser diode. Multiple optical carriers in conjunction with the F-P LD will realize a filter with multiple passbands. By adjusting the wavelengths of the multiple optical carriers, multiple passbands are merged into a single passband with a broadened bandwidth. By varying the number of the optical carrier, the bandwidth can be adjusted. The central frequency can be tuned by adjusting the wavelength of the multiple optical carriers simultaneously. A single-passband filter implemented by two optical carriers is experimentally demonstrated.
基金This work was supported by the National Key R&D Program of China(2022YFB3605104)National Natural Science Foundation of China(62250038,61904172,61974162,62034008,62074142,and 62074140)+1 种基金Strategic Priority Research Program of Chinese Academy of Sciences(XDB43030101)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SX-TD016).
文摘In the past few years,many groups have focused on the research and development of GaN-based ultraviolet laser diodes(UV LDs).Great progresses have been achieved even though many challenges exist.In this article,we analyze the challenges of developing GaN-based ultraviolet laser diodes,and the approaches to improve the performance of ultraviolet laser diode are reviewed.With these techniques,room temperature(RT)pulsed oscillation of AlGaN UVA(ultraviolet A)LD has been realized,with a lasing wavelength of 357.9 nm.Combining with the suppression of thermal effect,the high output power of 3.8 W UV LD with a lasing wavelength of 386.5 nm was also fabricated.
基金Supported by National Key R&D Project(2017YFB0405100)National Natural Science Foundation of China(61774024/61964007)Jilin province science and technology development plan(20190302007GX)。
文摘In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.
文摘In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.
文摘A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning range can be up to 9 run.
基金the National Natural Science Foundation of China(Grant Nos.12035006,12205095,and12147219)the Natural Science Foundation of Zhejiang Province(Grant No.LQ21A040001)。
文摘We present a compact injection-locking diode laser module to generate 671 nm laser light with a high output power up to 150 m W.The module adopts a master-slave injection-locking scheme,and the injection-locking state is monitored using the transmission spectrum from a Fabry-Perot interferometer.Beat frequency spectrum measurement shows that the injection-locked slave laser has no other frequency components within the 150-MHz detection bandwidth.It is found that without additional electronic feedback,the slave laser can follow the master laser over a wide range of 6 GHz.All the elements of the module are commercially available,which favors fast construction of a complete 671-nm laser system for the preparation of cold^(6)Li atoms with only one research-grade diode laser as the seeding source.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2012CB315701,2012CB315702)the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No. 2011AA010303)the National Nature Science Foundation of China (Grant No. 60925019,61090393)
文摘A new radio-over-fiber system for use in hybrid fiber-wireless access networks is proposed and experimentally demonstrated,which is based on cascaded injection-locked Fabry-Perot laser diodes.It is verified that the proposed technique is able to achieve a good suppression ratio of an optical carrier suppressed(OCS) signal simultaneously through a programmable optical filter and by use of optical injection locking technique.A 60 GHz carrier with downlink baseband data has been generated and down converted to baseband signal in order to be characterized in our laboratory.
文摘A piece of multimode optical fiber with a low num er ical aperture (NA) is used as an inexpensive microlens to collimate the output r adiation of a laser diode bar in the high numerical aperture (NA) direction.The emissions of the laser diode bar are coupled into multimode fiber array.The radi ation from individual ones of emitter regions is optically coupled into individu al ones of fiber array.Total coupling efficiency and fiber output power are 75% and 15W,respectively.
基金This work was supported by the National Basic Research Program of China (No.2013BAK12B00 and No.2013CB834602) and the National Natural Science Foundation of China (No.21225314 and No.21427804).
文摘Moisture measurement is of great needs in semiconductor industry, combustion diagnosis, meteorology, and atmospheric studies. We present an optical hygrometer based on cavity ring-down spectroscopy (CRDS). By using different absorption lines of H20 in the 1.56 and 1.36 gm regions, we are able to determine the relative concentration (mole fraction) of water vapor from a few percent down to the 10-12 level. The quantitative accuracy is examined by comparing the CRDS hygrometer with a commercial chilled-mirror dew-point meter. The high sensitivity of the CRDS instrument allows a water detection limit of 8 pptv.
文摘The 808nm laser diodes with a broad waveguide are designed and fabricated.The thickness of the Al_ 0.35 - Ga_ 0.65 As waveguide is increased to 0.9μm.In order to suppress the super modes,the thickness of the Al_ 0.55 Ga_ 0.45 As cladding layers is reduced to only 0.7μm while keeping the transverse radiation losses of the fundamental mode below 0.2cm -1 .The structures are grown by metal organic chemical vapour deposition.The devices show excellent performances.The maximum output power of 10.2W in the 100μm broad-area laser diodes is obtained.
文摘The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature is reported. The full width at half maximum of the band edge emitting peaks of the photoluminescence (PL) spectra at room temperature is less than 35meV for most of the multi-layer QD samples,revealing good,reproducible MBE growth conditions. Moreover,atomic force microscopy images show that the QD surface density can be controlled in the range from 1×10^10 to 7 ×10^10 cm^-2 . The best PL properties are obtained at a QD surface density of about 4×10^10cm^-2. Edge emitting lasers containing 3 and 5 stacked QD layers as the active layer lasing at room temperature in continuous wave operation mode are reported.
基金Fundfor Research on Doctoral Programs in Institutions of Higher Learning
文摘Diode pumped monolithic nonplanar ring laser has been developed, yielding single frequency laser and has the advantages of compactness, reliability and high efficiency. Its principles are given in detail and a monolithic nonplanar ring laser is designed. As a result, a laser of hundreds milliwatts cw single frequency output was built up, placed in a magnetic field and pumped by LD. The optical conversion efficiency was more than 15% and the slope efficiency more than 30%. The laser beam had a good quality, with M 2 about 1 2.
文摘Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.
文摘Studies on first GaN-based blue-violet laser diodes(LDs) in China mainland are reported.High quality GaN materials as well as GaN-based quantum wells laser structures are grown by metal-organic chemical vapor deposition method.The X-ray double-crystal diffraction rocking curve measurements show the full-width half maximum of 180″ and 185″ for (0002) symmetric reflection and (10 12) skew reflection,respectively.A room temperature mobility of 850cm2/(V·s) is obtained for a 3μm thick GaN film.Gain guided and ridge geometry waveguide laser diodes are fabricated with cleaved facet mirrors at room temperature under pulse current injection.The lasing wavelength is 405 9nm.A threshold current density of 5kA/cm2 and an output light power over 100mW are obtained for ridge geometry waveguide laser diodes.
文摘Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate laser diodes at 155Mb/s (STM-1),622Mb/s (STM-4) with adjustable modulation current from 0 to 50mA for an equivalent 50Ω load.The maximum modulation voltage is over 2.5V pp corresponding to a 3V DC bias for output stage.The time range of rise and fall from 360ps to 471ps is measured from the output voltage pulse.The RMS jitter is no more than 30ps for four bit rates.The power consumption is less than 410mW under a power supply voltage of 5V.According to the experimental results,the laser diode driver achieves the same level as their counterparts worldwide.
文摘A 1.60μm laser diode and electroabsorption modulator monolithically integrated with a novel dual-waveguide spot-size converter output for low-loss coupling to a cleaved single-mode optical fiber are demonstrated.The devices emit in a single transverse and quasi single longitudinal mode with an SMSR of 25.6dB.These devices exhibit a 3dB modulation bandwidth of 15.0GHz,and modulator DC extinction ratios of 16.2dB.The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3°×18.0°,respectively,resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.
文摘A DC-10Mb/s laser diode driver,compatible with TTL and CMOS levels,is presented. The optical power corresponding to‘1' and ‘0' can be set independently with resistors off-chip and stabilized with a closed loop. A novel peak-to- peak optical power monitor and stabilization mechanism is introduced. The circuit, fabricated in a CSMC 0. 5μm mixed signal CMOS process, can provide 120mA maximum drive current and 0. 6dB extinction ration fluctuation over - 20 + 80℃ ,which is independent of input pattern.
文摘A novel 1 55μm laser diode with spot size converter is designed and fabricated using conventional photolithography and chemical wet etching process.For the laser diode,a ridge double core structure is employed.For the spot size converter,a buried ridge double core structure is incorporated.The laterally tapered active core is designed and optically combined with the thin and wide passive core to control the size of mode.The laser diode threshold current is measured to be 40mA together with high slop efficiency of 0 35W/A.The beam divergence angles in the horizontal and vertical directions are as small as 14 89°×18 18°,respectively,resulting in low coupling losses with a cleaved optical fiber (3dB loss).
文摘By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at about 820nm with a single longitudinal mode. The Al-free grating surface permits the re-growth of a high-quality cladding layer that yields excellent device performance. The threshold current of these laser diodes is 57mA,and the slope efficiency is about 0.32mW/mA.
文摘Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.