Face detection is considered as a challenging problem in the field of image analysis and computer vision. There are many researches in this area, but because of its importance, it needs to be further developed. Succes...Face detection is considered as a challenging problem in the field of image analysis and computer vision. There are many researches in this area, but because of its importance, it needs to be further developed. Successive Mean Quantization Transform (SMQT) for illumination and sensor insensitive operation and Sparse Network of Winnow (SNoW) to speed up the original classifier based face detection technique presented such a good result. In this paper we use the Mean of Medians of CbCr (MMCbCr) color correction approach to enhance the combined SMQT features and SNoW classifier face detection technique. The proposed technique is applied on color images gathered from various sources such as Internet, and Georgia Database. Experimental results show that the face detection performance of the proposed method is more effective and accurate compared to SFSC method.展开更多
Automatic face detection and localization is a key problem in many computer vision tasks. In this paper, a simple yet effective approach for detecting and locating human faces in color images is proposed. The contribu...Automatic face detection and localization is a key problem in many computer vision tasks. In this paper, a simple yet effective approach for detecting and locating human faces in color images is proposed. The contribution of this paper is twofold. First, a particular reference to face detection techniques along with a background to neural networks is given. Second, and maybe most importantly, an adaptive cubic-spline neural network is designed to be used to detect and locate human faces in uncontrolled environments. The experimental results conducted on our test set show the effectiveness of the proposed approach and it can compare favorably with other state-of-the-art approaches in the literature.展开更多
For face detection under complex background and illumination, a detection method that combines the skin color segmentation and cost-sensitive Adaboost algorithm is proposed in this paper. First, by using the character...For face detection under complex background and illumination, a detection method that combines the skin color segmentation and cost-sensitive Adaboost algorithm is proposed in this paper. First, by using the characteristic of human skin color clustering in the color space, the skin color area in YC b C r color space is extracted and a large number of irrelevant backgrounds are excluded; then for remedying the deficiencies of Adaboost algorithm, the cost-sensitive function is introduced into the Adaboost algorithm; finally the skin color segmentation and cost-sensitive Adaboost algorithm are combined for the face detection. Experimental results show that the proposed detection method has a higher detection rate and detection speed, which can more adapt to the actual field environment.展开更多
This paper presents a method which utilizes color, local symmetry and geometry information of human face based on various models. The algorithm first detects most likely face regions or ROIs (Region-Of-Interest) from ...This paper presents a method which utilizes color, local symmetry and geometry information of human face based on various models. The algorithm first detects most likely face regions or ROIs (Region-Of-Interest) from the image using face color model and face outline model, produces a face color similarity map. Then it performs local symmetry detection within these ROIs to obtain a local symmetry similarity map. The two maps and local similarity map are fused to obtain potential facial feature points. Finally similarity matching is performed to identify faces between the fusion map and face geometry model under affine transformation. The output results are the detected faces with confidence values. The experimental results demonstrate its validity and robustness to identify faces under certain variations.展开更多
文摘Face detection is considered as a challenging problem in the field of image analysis and computer vision. There are many researches in this area, but because of its importance, it needs to be further developed. Successive Mean Quantization Transform (SMQT) for illumination and sensor insensitive operation and Sparse Network of Winnow (SNoW) to speed up the original classifier based face detection technique presented such a good result. In this paper we use the Mean of Medians of CbCr (MMCbCr) color correction approach to enhance the combined SMQT features and SNoW classifier face detection technique. The proposed technique is applied on color images gathered from various sources such as Internet, and Georgia Database. Experimental results show that the face detection performance of the proposed method is more effective and accurate compared to SFSC method.
文摘Automatic face detection and localization is a key problem in many computer vision tasks. In this paper, a simple yet effective approach for detecting and locating human faces in color images is proposed. The contribution of this paper is twofold. First, a particular reference to face detection techniques along with a background to neural networks is given. Second, and maybe most importantly, an adaptive cubic-spline neural network is designed to be used to detect and locate human faces in uncontrolled environments. The experimental results conducted on our test set show the effectiveness of the proposed approach and it can compare favorably with other state-of-the-art approaches in the literature.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2012CB215202the National Natural Science Foundation of China under Grant No.51205046
文摘For face detection under complex background and illumination, a detection method that combines the skin color segmentation and cost-sensitive Adaboost algorithm is proposed in this paper. First, by using the characteristic of human skin color clustering in the color space, the skin color area in YC b C r color space is extracted and a large number of irrelevant backgrounds are excluded; then for remedying the deficiencies of Adaboost algorithm, the cost-sensitive function is introduced into the Adaboost algorithm; finally the skin color segmentation and cost-sensitive Adaboost algorithm are combined for the face detection. Experimental results show that the proposed detection method has a higher detection rate and detection speed, which can more adapt to the actual field environment.
文摘This paper presents a method which utilizes color, local symmetry and geometry information of human face based on various models. The algorithm first detects most likely face regions or ROIs (Region-Of-Interest) from the image using face color model and face outline model, produces a face color similarity map. Then it performs local symmetry detection within these ROIs to obtain a local symmetry similarity map. The two maps and local similarity map are fused to obtain potential facial feature points. Finally similarity matching is performed to identify faces between the fusion map and face geometry model under affine transformation. The output results are the detected faces with confidence values. The experimental results demonstrate its validity and robustness to identify faces under certain variations.