期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Human Faces Detection and Tracking for Crowd Management in Hajj and Umrah
1
作者 Riad Alharbey Ameen Banjar +3 位作者 Yahia Said Mohamed Atri Abdulrahman Alshdadi Mohamed Abid 《Computers, Materials & Continua》 SCIE EI 2022年第6期6275-6291,共17页
Hajj and Umrah are two main religious duties for Muslims.To help faithfuls to perform their religious duties comfortably in overcrowded areas,a crowd management system is a must to control the entering and exiting for... Hajj and Umrah are two main religious duties for Muslims.To help faithfuls to perform their religious duties comfortably in overcrowded areas,a crowd management system is a must to control the entering and exiting for each place.Since the number of people is very high,an intelligent crowd management system can be developed to reduce human effort and accelerate the management process.In this work,we propose a crowd management process based on detecting,tracking,and counting human faces using Artificial Intelligence techniques.Human detection and counting will be performed to calculate the number of existing visitors and face detection and tracking will be used to identify all the humans for security purposes.The proposed crowd management system is composed form three main parts which are:(1)detecting human faces,(2)assigning each detected face with a numerical identifier,(3)storing the identity of each face in a database for further identification and tracking.The main contribution of this work focuses on the detection and tracking model which is based on an improved object detection model.The improved Yolo v4 was used for face detection and tracking.It has been very effective in detecting small objects in highresolution images.The novelty contained in thismethod was the integration of the adaptive attention mechanism to improve the performance of the model for the desired task.Channel wise attention mechanism was applied to the output layers while both channel wise and spatial attention was integrated in the building blocks.The main idea from the adaptive attention mechanisms is to make themodel focus more on the target and ignore false positive proposals.We demonstrated the efficiency of the proposed method through expensive experimentation on a publicly available dataset.The wider faces dataset was used for the train and the evaluation of the proposed detection and tracking model.The proposed model has achieved good results with 91.2%of mAP and a processing speed of 18 FPS on the Nvidia GTX 960 GPU. 展开更多
关键词 Crowdmanagement Hajj and Umrah face detection object tracking convolutional neural networks(CNN) adaptive attention mechanisms
下载PDF
基于自适应跟踪窗尺度的人脸探测
2
作者 雷震 王青海 +1 位作者 吴玲达 薛廷梅 《计算机科学》 CSCD 北大核心 2010年第4期281-284,共4页
作为一种有效的迭代算法,Mean-shift具有良好的特性,在目标跟踪、图像平滑和其他计算机视觉领域得到了广泛应用。鉴于标准Mean-shift算法缺乏尺度自适应机制,而Camshift算法每次探测前需要人工选定人脸区域样本才能进行准确的探测,提出... 作为一种有效的迭代算法,Mean-shift具有良好的特性,在目标跟踪、图像平滑和其他计算机视觉领域得到了广泛应用。鉴于标准Mean-shift算法缺乏尺度自适应机制,而Camshift算法每次探测前需要人工选定人脸区域样本才能进行准确的探测,提出了一种用于视频中人脸探测的自适应跟踪窗算法。该算法在跟踪框内采用光照补偿和肤色分割来校正跟踪窗尺度和位置。实验表明,该算法不但具有良好的实时性,而且能较好地减少传统算法中的定位误差,更加准确地探测出视频中的人脸。 展开更多
关键词 人脸探测 目标跟踪 自适应尺度 mean-shift
下载PDF
自适应尺度突变目标跟踪 被引量:3
3
作者 任俊丽 郭浩 +3 位作者 董亚飞 刘茹 安居白 王妍 《中国图象图形学报》 CSCD 北大核心 2020年第6期1150-1159,共10页
目的尺度突变是目标跟踪中一项极具挑战性的任务,短时间内目标的尺度发生突变会导致跟踪要素丢失,使得跟踪误差积累导致跟踪漂移,为了更好地解决这一问题,提出了一种先检测后跟踪的自适应尺度突变的跟踪算法(kernelized correlation fil... 目的尺度突变是目标跟踪中一项极具挑战性的任务,短时间内目标的尺度发生突变会导致跟踪要素丢失,使得跟踪误差积累导致跟踪漂移,为了更好地解决这一问题,提出了一种先检测后跟踪的自适应尺度突变的跟踪算法(kernelized correlation filter_you only look once,KCF_YOLO)。方法在跟踪的训练阶段使用相关滤波跟踪器实现快速跟踪,在检测阶段使用YOLO (you only look once) V3神经网络,并设计了自适应的模板更新策略,采用将检测到的物体的相似度与目标模板的颜色特征和图像指纹特征融合后的相似度进行对比的方法,判断目标是否发生遮挡,据此决定是否在当前帧更新目标模板。结果为证明本文方法的有效性在OTB(object tracking benchmark)2015数据集中具有尺度突变代表性的11个视频序列上进行试验,试验视频序列目标尺度变化为0.1~9.2倍,结果表明本文方法平均跟踪精度为0.955,平均跟踪速度为36帧/s,与经典尺度自适应跟踪算法比较,精度平均提高31.74%。结论本文使用相关滤波和神经网络在目标跟踪过程中先检测后跟踪的思想,提高了算法对目标跟踪过程中尺度突变情况的适应能力,实验结果验证了加入检测策略对后续目标尺度发生突变导致跟踪漂移的情况起到了很好的纠正作用,以及自适应模板更新策略的有效性。 展开更多
关键词 目标跟踪 相关滤波 神经网络检测 尺度突变 尺度自适应
原文传递
基于特征融合的长时目标跟踪算法 被引量:14
4
作者 葛宝义 左宪章 胡永江 《光学学报》 EI CAS CSCD 北大核心 2018年第11期203-215,共13页
针对长时目标跟踪中目标遮挡、目标出视野等因素导致的目标失跟问题,提出一种基于特征融合的长时目标跟踪算法,提高目标跟踪的速度和稳健性。首先,融合目标方向梯度直方图特征、颜色空间特征和局部敏感直方图特征,来增强算法在复杂情况... 针对长时目标跟踪中目标遮挡、目标出视野等因素导致的目标失跟问题,提出一种基于特征融合的长时目标跟踪算法,提高目标跟踪的速度和稳健性。首先,融合目标方向梯度直方图特征、颜色空间特征和局部敏感直方图特征,来增强算法在复杂情况下的特征判别力,提高目标跟踪的稳健性,并对融合特征进行降维来提高目标跟踪的速度;然后,通过额外的一维尺度相关滤波器来获得目标最优的尺度估计,并通过正交三角分解来无损降低计算复杂度;最后,自适应确定目标检测阈值,在目标遮挡或出视野导致目标失跟时,通过EdgeBoxes方法提取目标候选区域,利用结构化支持向量机重新检测目标位置达到长时跟踪的目的。在标准跟踪数据集OTB2015和UAV123上进行实验。结果表明,本文算法较对比算法中最优算法目标跟踪平均精度提升5.0%,目标跟踪平均成功率提升2.6%,目标跟踪平均速度为28.2 frame/s,可满足跟踪的实时性要求。在目标受到遮挡、出视野等情况下,该算法仍能够对目标进行持续准确的跟踪。 展开更多
关键词 机器视觉 目标跟踪 相关滤波 目标检测 特征融合 自适应 尺度估计
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部