期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
2DPCA versus PCA for face recognition 被引量:5
1
作者 胡建军 谭冠政 +1 位作者 栾凤刚 A.S.M.LIBDA 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1809-1816,共8页
Dimensionality reduction methods play an important role in face recognition. Principal component analysis(PCA) and two-dimensional principal component analysis(2DPCA) are two kinds of important methods in this field. ... Dimensionality reduction methods play an important role in face recognition. Principal component analysis(PCA) and two-dimensional principal component analysis(2DPCA) are two kinds of important methods in this field. Recent research seems like that 2DPCA method is superior to PCA method. To prove if this conclusion is always true, a comprehensive comparison study between PCA and 2DPCA methods was carried out. A novel concept, called column-image difference(CID), was proposed to analyze the difference between PCA and 2DPCA methods in theory. It is found that there exist some restrictive conditions when2 DPCA outperforms PCA. After theoretical analysis, the experiments were conducted on four famous face image databases. The experiment results confirm the validity of theoretical claim. 展开更多
关键词 face recognition dimensionality reduction 2dpca method pca method column-image difference(CID)
下载PDF
Research on Face Recognition Algorithm Based on Robust 2DPCA
2
作者 Haijun Kuang Wanzhou Ye Ze Zhu 《Advances in Pure Mathematics》 2021年第2期149-161,共13页
As a new dimension reduction method, the two-dimensional principal component (2DPCA) can be well applied in face recognition, but it is susceptible to outliers. Therefore, this paper proposes a new 2DPCA algorithm bas... As a new dimension reduction method, the two-dimensional principal component (2DPCA) can be well applied in face recognition, but it is susceptible to outliers. Therefore, this paper proposes a new 2DPCA algorithm based on angel-2DPCA. To reduce the reconstruction error and maximize the variance simultaneously, we choose F norm as the measure and propose the Fp-2DPCA algorithm. Considering that the image has two dimensions, we offer the Fp-2DPCA algorithm based on bilateral. Experiments show that, compared with other algorithms, the Fp-2DPCA algorithm has a better dimensionality reduction effect and better robustness to outliers. 展开更多
关键词 2dpca face recognition Dimension Reduction F Norm
下载PDF
Face Recognition Systems Using Relevance Weighted Two Dimensional Linear Discriminant Analysis Algorithm 被引量:4
3
作者 Hythem Ahmed Jedra Mohamed Zahid Noureddine 《Journal of Signal and Information Processing》 2012年第1期130-135,共6页
Low-dimensional feature representation with enhanced discriminatory power of paramount importance to face recognition systems. Most of traditional linear discriminant analysis (LDA)-based methods suffer from the disad... Low-dimensional feature representation with enhanced discriminatory power of paramount importance to face recognition systems. Most of traditional linear discriminant analysis (LDA)-based methods suffer from the disadvantage that their optimality criteria are not directly related to the classification ability of the obtained feature representation. Moreover, their classification accuracy is affected by the “small sample size” (SSS) problem which is often encountered in face recognition tasks. In this paper, we propose a new technique coined Relevance-Weighted Two Dimensional Linear Discriminant Analysis (RW2DLDA). Its over comes the singularity problem implicitly, while achieving efficiency. Moreover, a weight discriminant hyper plane is used in the between class scatter matrix, and RW method is used in the within class scatter matrix to weigh the information to resolve confusable data in these classes. Experiments on two well known facial databases show the effectiveness of the proposed method. Comparisons with other LDA-based methods show that our method improves the LDA classification performance. 展开更多
关键词 LDA pca 2DLDA RW2DLDA Extraction face recognition Small SAMPLE Size
下载PDF
Weighted Scatter-Difference-Based Two DimensionalDiscriminant Analysis for Face Recognition 被引量:1
4
作者 Hythem Ahmed Mohamed Jedra Nouredine Zahid 《Intelligent Information Management》 2012年第4期108-114,共7页
Linear Discriminant Analysis (LDA) is a well-known scheme for feature extraction and dimension. It has been used widely in many applications involving high-dimensional data, such as face recognition, image retrieval, ... Linear Discriminant Analysis (LDA) is a well-known scheme for feature extraction and dimension. It has been used widely in many applications involving high-dimensional data, such as face recognition, image retrieval, etc. An intrinsic limitation of classical LDA is the so-called singularity problem, that is, it fails when all scatter matrices are singular. A well-known approach to deal with the singularity problem is to apply an intermediate dimension reduction stage using Principal Component Analysis (PCA) before LDA. The algorithm, called PCA + LDA, is used widely in face recognition. However, PCA + LDA have high costs in time and space, due to the need for an eigen-decomposition involving the scatter matrices. Also, Two Dimensional Linear Discriminant Analysis (2DLDA) implicitly overcomes the singular- ity problem, while achieving efficiency. The difference between 2DLDA and classical LDA lies in the model for data representation. Classical LDA works with vectorized representation of data, while the 2DLDA algorithm works with data in matrix representation. To deal with the singularity problem we propose a new technique coined as the Weighted Scatter-Difference-Based Two Dimensional Discriminant Analysis (WSD2DDA). The algorithm is applied on face recognition and compared with PCA + LDA and 2DLDA. Experiments show that WSD2DDA achieve competitive recognition accuracy, while being much more efficient. 展开更多
关键词 Feature Extraction face recognition LDA pca 2dpca 2DLDA WSD2DDA
下载PDF
一种基于加权变形的2DPCA的人脸特征提取方法 被引量:24
5
作者 曾岳 冯大政 《电子与信息学报》 EI CSCD 北大核心 2011年第4期769-774,共6页
该文首先分析了主成分分析法(PCA)和2维主成分分析法(2DPCA)的关系,针对2DPCA丢失具有鉴别能力的协方差信息以及PCA方法不能解决小样本的问题,提出了基于一种加权变形的2DPCA的人脸特征提取方法(WV2DPCA),该方法利用变形的2DPCA方法分... 该文首先分析了主成分分析法(PCA)和2维主成分分析法(2DPCA)的关系,针对2DPCA丢失具有鉴别能力的协方差信息以及PCA方法不能解决小样本的问题,提出了基于一种加权变形的2DPCA的人脸特征提取方法(WV2DPCA),该方法利用变形的2DPCA方法分别对人脸3个子部分分别提取特征,然后根据最近邻理论和权值进行分类。经过在ORL人脸库和YALE人脸库的实验研究表明:与2DPCA相比,提高了人脸空间的识别率,压缩了人脸空间的系数,减少了识别时间;在识别的准确率方面,更优于传统的Fisherfaces,IC,Kernel Eigenfaces的算法。 展开更多
关键词 人脸识别 人脸表示 主成分分析法(pca) 2维主成分分析法(2dpca)
下载PDF
分块双向2DPCA融合局部特征的人脸识别
6
作者 杨叶芬 刘海 叶成景 《激光杂志》 CAS 北大核心 2015年第1期40-45,共6页
针对(2D)2PCA无法保存某些重要局部特征的问题,提出了一种分块双向二维主成分分析融合局部特征方法。首先,将图像分解为互不重叠的子块,每个子块包含重要的局部信息,利用(2D)2PCA对子块进行特征提取并投影到特征子空间;然后,对每个子块... 针对(2D)2PCA无法保存某些重要局部特征的问题,提出了一种分块双向二维主成分分析融合局部特征方法。首先,将图像分解为互不重叠的子块,每个子块包含重要的局部信息,利用(2D)2PCA对子块进行特征提取并投影到特征子空间;然后,对每个子块分别设计一个分类器并在一定置信度范围内判别测试样本所属类别。最后,根据所有子块所属类别的置信度之和完成人脸分类。在四个人脸识别数据库上的实验结果表明,相比其它几种人脸识别算法,所提方法取得了更高的识别精度。 展开更多
关键词 人脸识别 双向二维主成分分析 特征提取 局部特征 置信度
下载PDF
基于分块2DDCT和(2D)^2PCA的人脸识别 被引量:1
7
作者 李文举 尉秀芹 高连军 《辽宁师范大学学报(自然科学版)》 CAS 2013年第2期174-177,共4页
人脸识别是生物特征识别技术中的重要研究领域,应用前景广阔.研究者们虽然提出了很多人脸识别算法,但其性能仍需进一步改进.为了提高现有人脸识别算法的识别准确率,提出了一种新的基于分块二维离散余弦变换(2DDCT)和双向二维主成分分析(... 人脸识别是生物特征识别技术中的重要研究领域,应用前景广阔.研究者们虽然提出了很多人脸识别算法,但其性能仍需进一步改进.为了提高现有人脸识别算法的识别准确率,提出了一种新的基于分块二维离散余弦变换(2DDCT)和双向二维主成分分析((2D)2PCA)的人脸识别算法.首先,将图像分块,利用2DDCT进行图像压缩,去除冗余信息,并通过逆2DDCT重建图像;其次,通过(2D)2PCA消除图像的行、列相关性,降低特征维数;最后,应用最近邻分类器进行人脸识别,在ORL人脸数据库中的实验证明了本算法的有效性. 展开更多
关键词 人脸识别 二维离散余弦变换 双向二维主成分分析
下载PDF
Curvelet变换结合(2D)~2PCA的人脸识别算法 被引量:2
8
作者 赵庆敏 彭雪莹 《南昌大学学报(理科版)》 CAS 北大核心 2018年第2期180-183,共4页
作为一种新的多尺度多方向性的信号分析工具,Curvelet变换不但具有小波变换多尺度和多分辨率的特点,还具有很强的方向性,对包含大量面部轮廓和五官曲线信息的人脸图像能实现最优的稀疏表示。本文提出并实现了一种基于Curvelet变换结合... 作为一种新的多尺度多方向性的信号分析工具,Curvelet变换不但具有小波变换多尺度和多分辨率的特点,还具有很强的方向性,对包含大量面部轮廓和五官曲线信息的人脸图像能实现最优的稀疏表示。本文提出并实现了一种基于Curvelet变换结合双向二维主成分分析((2D)~2PCA)的人脸识别算法,以Yale人脸数据库进行人脸识别实验,结果表明,该算法相对于传统基于小波变换的人脸识别算法,能有效提高识别率,缩短识别时间。 展开更多
关键词 CURVELET变换 小波变换 人脸识别 双向二维主成分分析((2D)^2pca)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部