The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in...The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.展开更多
Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate b...Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate based on facial video is an exciting research field for getting palpation information by observation diagnosis.However,most studies focus on optimizing the algorithm based on a small sample of participants without systematically investigating multiple influencing factors.A total of 209 participants and 2,435 facial videos,based on our self-constructed Multi-Scene Sign Dataset and the public datasets,were used to perform a multi-level and multi-factor comprehensive comparison.The effects of different datasets,blood volume pulse signal extraction algorithms,region of interests,time windows,color spaces,pulse rate calculation methods,and video recording scenes were analyzed.Furthermore,we proposed a blood volume pulse signal quality optimization strategy based on the inverse Fourier transform and an improvement strategy for pulse rate estimation based on signal-to-noise ratio threshold sliding.We found that the effects of video estimation of pulse rate in the Multi-Scene Sign Dataset and Pulse Rate Detection Dataset were better than in other datasets.Compared with Fast independent component analysis and Single Channel algorithms,chrominance-based method and plane-orthogonal-to-skin algorithms have a more vital anti-interference ability and higher robustness.The performances of the five-organs fusion area and the full-face area were better than that of single sub-regions,and the fewer motion artifacts and better lighting can improve the precision of pulse rate estimation.展开更多
Facial emotion recognition(FER)has become a focal point of research due to its widespread applications,ranging from human-computer interaction to affective computing.While traditional FER techniques have relied on han...Facial emotion recognition(FER)has become a focal point of research due to its widespread applications,ranging from human-computer interaction to affective computing.While traditional FER techniques have relied on handcrafted features and classification models trained on image or video datasets,recent strides in artificial intelligence and deep learning(DL)have ushered in more sophisticated approaches.The research aims to develop a FER system using a Faster Region Convolutional Neural Network(FRCNN)and design a specialized FRCNN architecture tailored for facial emotion recognition,leveraging its ability to capture spatial hierarchies within localized regions of facial features.The proposed work enhances the accuracy and efficiency of facial emotion recognition.The proposed work comprises twomajor key components:Inception V3-based feature extraction and FRCNN-based emotion categorization.Extensive experimentation on Kaggle datasets validates the effectiveness of the proposed strategy,showcasing the FRCNN approach’s resilience and accuracy in identifying and categorizing facial expressions.The model’s overall performance metrics are compelling,with an accuracy of 98.4%,precision of 97.2%,and recall of 96.31%.This work introduces a perceptive deep learning-based FER method,contributing to the evolving landscape of emotion recognition technologies.The high accuracy and resilience demonstrated by the FRCNN approach underscore its potential for real-world applications.This research advances the field of FER and presents a compelling case for the practicality and efficacy of deep learning models in automating the understanding of facial emotions.展开更多
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in...The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity.展开更多
Stem/progenitor cells differentiate into different cell lineages during organ development and morphogenesis.Signaling pathway networks and mechanotransduction are important factors to guide the lineage commitment of s...Stem/progenitor cells differentiate into different cell lineages during organ development and morphogenesis.Signaling pathway networks and mechanotransduction are important factors to guide the lineage commitment of stem/progenitor cells during craniofacial tissue morphogenesis.展开更多
The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial ex...The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.展开更多
Deception detection is regarded as a concern for everyone in their daily lives and affects social interactions.The human face is a rich source of data that offers trustworthy markers of deception.The deception or lie ...Deception detection is regarded as a concern for everyone in their daily lives and affects social interactions.The human face is a rich source of data that offers trustworthy markers of deception.The deception or lie detection systems are non-intrusive,cost-effective,and mobile by identifying facial expressions.Over the last decade,numerous studies have been conducted on deception detection using several advanced techniques.Researchers have focused their attention on inventing more effective and efficient solutions for the detection of deception.So,it could be challenging to spot trends,practical approaches,gaps,and chances for contribution.However,there are still a lot of opportunities for innovative deception detection methods.Therefore,we used a variety of machine learning(ML)and deep learning(DL)approaches to experiment with this work.This research aims to do the following:(i)review and analyze the current lie detection(LD)systems;(ii)create a dataset;(iii)use several ML and DL techniques to identify lying;and(iv)create a hybrid model known as LDNet.By combining layers from Vgg16 and DeneseNet121,LDNet was developed and offered the best accuracy(99.50%)of all the models.Our developed hybrid model is a great addition that significantly advances the study of LD.The findings from this research endeavor are expected to advance our understanding of the effectiveness of ML and DL techniques in LD.Furthermore,it has significant practical applications in diverse domains such as security,law enforcement,border control,organizations,and investigation cases where accurate lie detection is paramount.展开更多
Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particula...Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis.展开更多
Although the pediatric perioperative pain management has been improved in recent years,the valid and reliable pain assessment tool in perioperative period of children remains a challenging task.Pediatric perioperative...Although the pediatric perioperative pain management has been improved in recent years,the valid and reliable pain assessment tool in perioperative period of children remains a challenging task.Pediatric perioperative pain management is intractable not only because children cannot express their emotions accurately and objectively due to their inability to describe physiological characteristics of feeling which are different from those of adults,but also because there is a lack of effective and specific assessment tool for children.In addition,exposure to repeated painful stimuli early in life is known to have short and long-term adverse sequelae.The short-term sequelae can induce a series of neurological,endocrine,cardiovascular system stress related to psychological trauma,while long-term sequelae may alter brain maturation process,which can lead to impair neurodevelopmental,behavioral,and cognitive function.Children’s facial expressions largely reflect the degree of pain,which has led to the developing of a number of pain scoring tools that will help improve the quality of pain mana-gement in children if they are continually studied in depth.The artificial inte-lligence(AI)technology represented by machine learning has reached an unprecedented level in image processing of deep facial models through deep convolutional neural networks,which can effectively identify and systematically analyze various subtle features of children’s facial expressions.Based on the construction of a large database of images of facial expressions in children with perioperative pain,this study proposes to develop and apply automatic facial pain expression recognition software using AI technology.The study aims to improve the postoperative pain management for pediatric population and the short-term and long-term quality of life for pediatric patients after operational event.展开更多
Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical...Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized.展开更多
BACKGROUND Facial herpes is a common form of the herpes simplex virus-1 infection and usually presents as vesicles near the mouth,nose,and periocular sites.In contrast,we observed a new facial symptom of herpes on the...BACKGROUND Facial herpes is a common form of the herpes simplex virus-1 infection and usually presents as vesicles near the mouth,nose,and periocular sites.In contrast,we observed a new facial symptom of herpes on the entire face without vesicles.CASE SUMMARY A 33-year-old woman with a history of varicella infection and shingles since an early age presented with sarcoidosis of the entire face and neuralgia without oral lesions.The patient was prescribed antiviral treatment with valacyclovir and acyclovir cream.One day after drug administration,facial skin lesions and neurological pain improved.Herpes simplex without oral blisters can easily be misdiagnosed as pimples upon visual examination in an outpatient clinic.CONCLUSION As acute herpes simplex is accompanied by neuralgia,prompt diagnosis and prescription are necessary,considering the pathological history and health conditions.展开更多
Congenital unilateral lower lip palsy(CULLP),or congenital hypoplasia of the depressor anguli oris muscle,also known as asymmetric crying facies,is a rare condition that results in asymmetry of the lower lip during sm...Congenital unilateral lower lip palsy(CULLP),or congenital hypoplasia of the depressor anguli oris muscle,also known as asymmetric crying facies,is a rare condition that results in asymmetry of the lower lip during smiling,laughing,and crying.Although the etiology is unknown,weakness of the depressor labii inferioris(DLI)muscle is implicated as a contributing factor.Currently,no well-established treatment options are available.This case report describes an 18-year-old male patient diagnosed with CULLP.Physical examination revealed a symmetric face at rest,but asymmetry when smiling and opening the mouth.Following the administration of lidocaine into the affected DLI muscle,the patient’s smile and lower lip symmetry were immediately restored without any adverse effects.Subsequently,administration of botulinum toxin for neuromodulation of the DLI muscle led to a significant improvement in symmetry and oral function within 2 weeks,which was sustained at 1 month and 3 months post-treatment.No adverse effects were reported,and both patients and families expressed high satisfaction with the outcomes.This case highlights the potential use of neuromodulation as a minimally invasive and effective treatment for CULLP.展开更多
Background: The ear and face are indispensable and distinctive features for hearing and identification. Objectives: This study was designed to generate anthropometric data of the ear and facial indices of females of E...Background: The ear and face are indispensable and distinctive features for hearing and identification. Objectives: This study was designed to generate anthropometric data of the ear and facial indices of females of Efik and Ibibio children in Cross River and Akwa Ibom States, show morphological and aesthetic differences and ethnicity. Methods: A total of 600 female children (300 Efiks and 300 Ibibios) aged 2 to 10 years that met the inclusion criteria were chosen from selected primary schools in Calabar Municipality, Calabar South of Cross River State and from Uyo, Itu of Akwa Ibom State, Nigeria. Standardized measurements of face length, face width, ear length, and ear width were taken with a spreading caliper;the facial (proscopic) and ear (auricular) indices were determined. Results: Efik subjects presented a mean face length of 8.36 ± 0.06 cm, face width of 11.04 ± 0.04 cm, ear length of 4.92 ± 0.02 cm, and ear width of 3.06 ± 0.01 cm. Ibibio subjects had mean values for face length, face width, ear length, and ear width as 8.17 ± 0.05 cm, 10.75 ± 0.05 cm, 4.77 ± 0.03 cm, and 2.94 ± 0.02 cm respectively. The mean facial index and ear index for Efik subjects were 75.68 ± 0.31 and 62.16 ± 0.27 respectively;while the mean facial and ear indices for Ibibio subjects were 74.79 ± 0.36 and 61.80 ± 0.34 respectively. Statistical analysis demonstrated significant differences in face length, ear length, ear width and facial index, with the Efik subjects having higher values than Ibibio subjects (p Conclusion: The results showed hypereuryproscopic face as the prevalent face type among females of both ethnic groups, therefore can be of importance in sex, ethnic, and racial differentiation, and in clinical practice, aesthetics and forensic medicine.展开更多
Bipolar disorder is a serious mental condition that may be caused by any kind of stress or emotional upset experienced by the patient.It affects a large percentage of people globally,who fluctuate between depression a...Bipolar disorder is a serious mental condition that may be caused by any kind of stress or emotional upset experienced by the patient.It affects a large percentage of people globally,who fluctuate between depression and mania,or vice versa.A pleasant or unpleasant mood is more than a reflection of a state of mind.Normally,it is a difficult task to analyze through physical examination due to a large patient-psychiatrist ratio,so automated procedures are the best options to diagnose and verify the severity of bipolar.In this research work,facial microexpressions have been used for bipolar detection using the proposed Convolutional Neural Network(CNN)-based model.Facial Action Coding System(FACS)is used to extract micro-expressions called Action Units(AUs)connected with sad,happy,and angry emotions.Experiments have been conducted on a dataset collected from Bahawal Victoria Hospital,Bahawalpur,Pakistan,Using the Patient Health Questionnaire-15(PHQ-15)to infer a patient’s mental state.The experimental results showed a validation accuracy of 98.99%for the proposed CNN modelwhile classification through extracted featuresUsing SupportVectorMachines(SVM),K-NearestNeighbour(KNN),and Decision Tree(DT)obtained 99.9%,98.7%,and 98.9%accuracy,respectively.Overall,the outcomes demonstrated the stated method’s superiority over the current best practices.展开更多
To thoroughly understand market opportunity of freeze-dried facial mask and deeply get insight of consumers’usage behavior and needs,evaluate sensory feelings of 10 screened commercial freeze-dried facial mask produc...To thoroughly understand market opportunity of freeze-dried facial mask and deeply get insight of consumers’usage behavior and needs,evaluate sensory feelings of 10 screened commercial freeze-dried facial mask products,group test products according to the differences of sensory attributions via Principal Component Analysis(PCA)and Agglomerative Hierarchical Clustering(AHC),pick up the representative products.Freeze-dried facial mask users evaluate satisfaction degree of picked up products and participate survey of usage behavior/cognition.Analyze consumer data by AHC to get consumer segmentations and their profile.The test results show that,sensory data and consumer data,which is from consumers test of screened representative products by performing PCA and AHC on sensory data,can be verified mutually.It is helpful to understand the needs of consumer segmentations and reason to buy by combining sensory data and consumer test.展开更多
Background: Maxillofacial trauma affects young adults more. The injury assessment is difficult to establish in low-income countries because of the imaging means, particularly the scanner, which is poorly available and...Background: Maxillofacial trauma affects young adults more. The injury assessment is difficult to establish in low-income countries because of the imaging means, particularly the scanner, which is poorly available and less financially accessible. The aim of this study is to describe the epidemiological profile and the various tomodensitometric aspects of traumatic lesions of the face in patients received in the Radiology department of Kira Hospital. Patients and methods: This is a descriptive retrospective study involving 104 patients of all ages over a period of 2 years from December 2018 to November 2019 in the medical imaging department of KIRA HOSPITAL. We included in our study any patient having undergone a CT scan of the head and presenting at least one lesion of the facial mass, whether associated with other cranioencephalic lesions. Results: Among the 384 patients received for head trauma, 104 patients (27.1% of cases) presented facial damage. The average age of our patients was 32.02 years with extremes of 8 months and 79 years. In our study, 87 of the patients (83.6%) were male. The road accident was the circumstance in which facial trauma occurred in 79 patients (76% of cases). These injuries were accompanied by at least one bone fracture in 97 patients (93.3%). Patients with fractures of more than 3 facial bones accounted for 40.2% of cases and those with fractures of 2 to 3 bones accounted for 44.6% of cases. The midface was the site of the fracture in 85 patients (87.6% of cases). Orbital wall fractures were noted in 57 patients (58.8% of cases) and the jawbone was the site of a fracture in 50 patients (51.5% of cases). In the vault, the fractures involved the extra-facial frontal bone (36.1% of cases) and temporal bone (18.6% of cases). Cerebral contusion was noted in 41.2% of patients and pneumoencephaly in 15.5% of patients. Extradural hematoma was present in 16 patients and subdural hematoma affected 13 patients. Conclusion: Computed tomography is a diagnostic tool of choice in facial trauma patients. Most of these young patients present with multiple fractures localizing to the mid-level of the face with concomitant involvement of the brain.展开更多
Apart from listening to the cry of a healthy newborn,it is the declaration by the attending paediatrician in the labour room that the child is normal which brings utmost joy to parents.The global incidence of children...Apart from listening to the cry of a healthy newborn,it is the declaration by the attending paediatrician in the labour room that the child is normal which brings utmost joy to parents.The global incidence of children born with congenital anomalies has been reported to be 3%-6%with more than 90%of these occurring in low-and middle-income group countries.The exact percentages/total numbers of children requiring surgical treatment cannot be estimated for several reasons.These children are operated under several surgical disciplines,viz,paediatric-,plastic reconstructive,neuro-,cardiothoracic-,orthopaedic surgery etc.These conditions may be life-threatening,e.g.,trachea-oesophageal fistula,critical pulmonary stenosis,etc.and require immediate surgical intervention.Some,e.g.,hydrocephalus,may need intervention as soon as the patient is fit for surgery.Some,e.g.,patent ductus arteriosus need‘wait and watch’policy up to a certain age in the hope of spontaneous recovery.Another extremely important category is that of patients where the operative intervention is done based on their age.Almost all the congenital anomalies coming under care of a plastic surgeon are operated as elective surgery(many as multiple stages of correction)at appropriate ages.There are advantages and disadvantages of intervention at different ages.In this article,we present a review of optimal timings,along with reasoning,for surgery of many of the common congenital anomalies which are treated by plastic surgeons.Obstetricians,paediatricians and general practitioners/family physicians,who most often are the first ones to come across such children,must know to guide the parents appropriately and convincingly impress upon the them as to why their child should not be operated immediately and also the consequences of too soon or too late.展开更多
To evaluate the efficacy of online learning and explore the impact of long-term use of electronic products on facial skin as well as eyes.A cross-sectional survey was conducted to 180 sophomores in Xi′an Jiaotong Uni...To evaluate the efficacy of online learning and explore the impact of long-term use of electronic products on facial skin as well as eyes.A cross-sectional survey was conducted to 180 sophomores in Xi′an Jiaotong University by cluster random sampling from September to October 2021.The questionnaire covering study condition,skin lesion and Ocular Surface Disease Index.χ_(2) test was used to compare the facial skin condition among different groups,and spearman correlation test was used to test the correlation of rank data.During online education,students′learning pressure is reduced,their autonomy is improved,and the learning efficiency is reduced.There were differences in the incidence of facial itching and papules among different groups.Duration of use of electronic products was positively correlated with the facial itching,with an r value of 0.231(P<0.05);the proportion of pigmentation in non-blue light protection groups(12.8%)was higher than that in blue light protection groups(1.7%),the difference was statistically significant(χ_(2)=8.384,P<0.05).The prevalence of dry eye among college students is 66.7%,and the proportion of moderate to severe dry eye is 34.5%.The study autonomy has been improved during online teaching.Long-term use of electronic products and no blue light protection have an impact on facial skin.Students should enhance the knowledge of skin-care and eye-care and develop better habits.展开更多
Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),w...Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),which consists of a firming essence,an atomizer and a photoelectric penetrator,for facial anti-aging efficacy.Material and methods:In this work,in vitro cell experiments and human efficacy study were used to evaluate the firming and anti-wrinkle effects.Cell experiments were used to verify the effect of the firming essence on the cell proliferation,migration,and anti-inflammation in keratinocytes(HaCaT),and on the gene expression levels of type I and type III collagen(Col-1 and Col-3)and type I matrix metalloproteinase(MMP-1)in human skin fibroblasts(HSF).After in vitro test,60 women aged 35–60 years were enrolled in the randomized test,of which 30 subjects were randomly selected to be the experimental group and treated with the TPS system,while the left 30 subjects were treated with the firming essence only considered as control.After 28 days,skin elasticity,skin redness value,and skin wrinkles were measured to evaluate the efficacy of the TPS system.Results:Cell experiments showed that the firming essence can significantly improve the proliferation and the migration of HaCaT cells.It also promoted the expression level of Col-1 and Col-3 gene,and inhibited the expression level of MMP-1 gene in HSF cells.After confirming the efficacy of firming essence,the efficacy benefit of the TPS was further studied.The 28-day tests show that combined use firming essence with atomizer and penetrator can significantly increase skin elasticity,reduce skin hemoglobin value and skin wrinkles on Day 28.Moreover,all the mentioned improvements are significantly better than that in the control group.Conclusion:Through efficient delivery in the whole process,TPS boosts the efficacy of active components in the firming essence.TPS offers an efficient,non-invasive,and convenient way for enhanced facial rejuvenation efficacy.展开更多
Introduction: Peripheral facial palsy (PFP) is a frequent reason for ENT consultations. It is a common complication of human immunodeficiency virus (HIV) infection. The aim of this study was to describe the diagnostic...Introduction: Peripheral facial palsy (PFP) is a frequent reason for ENT consultations. It is a common complication of human immunodeficiency virus (HIV) infection. The aim of this study was to describe the diagnostic and therapeutic aspects and to establish the correlation between PFP and HIV in our context. Patients and Method: This was a retrospective descriptive study conducted in the ENT and CFS department of the HIAOBO, covering the medical records of patients hospitalized for taking a PFP on HIV terrain from January 1, 2016 to December 31, 2020. Results: The study involved 17 patients, 10 men (59%) and 7 women (41%), a sex ratio of 1.4. The average age was 39 years with the extremes of 11 and 69 years. Shopkeepers reported 9 cases (53%). The reason for consultation was facial asymmetry in 11 cases (100%). The delay in consultation during the first week was 82.4%. Clinical signs were unilateral facial asymmetry, the opening of the palpebral fissure and lacrimation. All patients received medical treatment for PFP and HIV. Evolution was favorable, with complete recovery and no sequelae in 82.4% of cases. Surgery was performed in one case. Conclusion: PFPs are common in HIV infection. Diagnosis is clinical and management is multidisciplinary. Progression depends on the length of time taken to treat the disease.展开更多
基金Science and Technology Funds from the Liaoning Education Department(Serial Number:LJKZ0104).
文摘The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.
基金supported by the Key Research Program of the Chinese Academy of Sciences(grant number ZDRW-ZS-2021-1-2).
文摘Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate based on facial video is an exciting research field for getting palpation information by observation diagnosis.However,most studies focus on optimizing the algorithm based on a small sample of participants without systematically investigating multiple influencing factors.A total of 209 participants and 2,435 facial videos,based on our self-constructed Multi-Scene Sign Dataset and the public datasets,were used to perform a multi-level and multi-factor comprehensive comparison.The effects of different datasets,blood volume pulse signal extraction algorithms,region of interests,time windows,color spaces,pulse rate calculation methods,and video recording scenes were analyzed.Furthermore,we proposed a blood volume pulse signal quality optimization strategy based on the inverse Fourier transform and an improvement strategy for pulse rate estimation based on signal-to-noise ratio threshold sliding.We found that the effects of video estimation of pulse rate in the Multi-Scene Sign Dataset and Pulse Rate Detection Dataset were better than in other datasets.Compared with Fast independent component analysis and Single Channel algorithms,chrominance-based method and plane-orthogonal-to-skin algorithms have a more vital anti-interference ability and higher robustness.The performances of the five-organs fusion area and the full-face area were better than that of single sub-regions,and the fewer motion artifacts and better lighting can improve the precision of pulse rate estimation.
文摘Facial emotion recognition(FER)has become a focal point of research due to its widespread applications,ranging from human-computer interaction to affective computing.While traditional FER techniques have relied on handcrafted features and classification models trained on image or video datasets,recent strides in artificial intelligence and deep learning(DL)have ushered in more sophisticated approaches.The research aims to develop a FER system using a Faster Region Convolutional Neural Network(FRCNN)and design a specialized FRCNN architecture tailored for facial emotion recognition,leveraging its ability to capture spatial hierarchies within localized regions of facial features.The proposed work enhances the accuracy and efficiency of facial emotion recognition.The proposed work comprises twomajor key components:Inception V3-based feature extraction and FRCNN-based emotion categorization.Extensive experimentation on Kaggle datasets validates the effectiveness of the proposed strategy,showcasing the FRCNN approach’s resilience and accuracy in identifying and categorizing facial expressions.The model’s overall performance metrics are compelling,with an accuracy of 98.4%,precision of 97.2%,and recall of 96.31%.This work introduces a perceptive deep learning-based FER method,contributing to the evolving landscape of emotion recognition technologies.The high accuracy and resilience demonstrated by the FRCNN approach underscore its potential for real-world applications.This research advances the field of FER and presents a compelling case for the practicality and efficacy of deep learning models in automating the understanding of facial emotions.
文摘The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingthe significance of using cutting-edge technology to meet rising privacy issues in digital identity.
基金supported by funding from the National Institute of Dental and Craniofacial Research,National Institutes of Health (R01 DE022503 and R01 DE012711 to Yang Chai)。
文摘Stem/progenitor cells differentiate into different cell lineages during organ development and morphogenesis.Signaling pathway networks and mechanotransduction are important factors to guide the lineage commitment of stem/progenitor cells during craniofacial tissue morphogenesis.
基金supported by the National Natural Science Foundation of China under Grant No.62276051the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC0640Medical Industry Information Integration Collaborative Innovation Project of Yangtze Delta Region Institute under Grant No.U0723002。
文摘The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.
基金funded by the Ministry of Higher Education(MOHE),Malaysia under the Fundamental Research Grant Project(FRGS/1/2021/SS0/TAYLOR/02/6)。
文摘Deception detection is regarded as a concern for everyone in their daily lives and affects social interactions.The human face is a rich source of data that offers trustworthy markers of deception.The deception or lie detection systems are non-intrusive,cost-effective,and mobile by identifying facial expressions.Over the last decade,numerous studies have been conducted on deception detection using several advanced techniques.Researchers have focused their attention on inventing more effective and efficient solutions for the detection of deception.So,it could be challenging to spot trends,practical approaches,gaps,and chances for contribution.However,there are still a lot of opportunities for innovative deception detection methods.Therefore,we used a variety of machine learning(ML)and deep learning(DL)approaches to experiment with this work.This research aims to do the following:(i)review and analyze the current lie detection(LD)systems;(ii)create a dataset;(iii)use several ML and DL techniques to identify lying;and(iv)create a hybrid model known as LDNet.By combining layers from Vgg16 and DeneseNet121,LDNet was developed and offered the best accuracy(99.50%)of all the models.Our developed hybrid model is a great addition that significantly advances the study of LD.The findings from this research endeavor are expected to advance our understanding of the effectiveness of ML and DL techniques in LD.Furthermore,it has significant practical applications in diverse domains such as security,law enforcement,border control,organizations,and investigation cases where accurate lie detection is paramount.
文摘Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis.
文摘Although the pediatric perioperative pain management has been improved in recent years,the valid and reliable pain assessment tool in perioperative period of children remains a challenging task.Pediatric perioperative pain management is intractable not only because children cannot express their emotions accurately and objectively due to their inability to describe physiological characteristics of feeling which are different from those of adults,but also because there is a lack of effective and specific assessment tool for children.In addition,exposure to repeated painful stimuli early in life is known to have short and long-term adverse sequelae.The short-term sequelae can induce a series of neurological,endocrine,cardiovascular system stress related to psychological trauma,while long-term sequelae may alter brain maturation process,which can lead to impair neurodevelopmental,behavioral,and cognitive function.Children’s facial expressions largely reflect the degree of pain,which has led to the developing of a number of pain scoring tools that will help improve the quality of pain mana-gement in children if they are continually studied in depth.The artificial inte-lligence(AI)technology represented by machine learning has reached an unprecedented level in image processing of deep facial models through deep convolutional neural networks,which can effectively identify and systematically analyze various subtle features of children’s facial expressions.Based on the construction of a large database of images of facial expressions in children with perioperative pain,this study proposes to develop and apply automatic facial pain expression recognition software using AI technology.The study aims to improve the postoperative pain management for pediatric population and the short-term and long-term quality of life for pediatric patients after operational event.
基金National Key Research and Development Program of China(2022YFC3502302)National Natural Science Foundation of China(82074580)Graduate Research Innovation Program of Jiangsu Province(KYCX23_2078).
文摘Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized.
文摘BACKGROUND Facial herpes is a common form of the herpes simplex virus-1 infection and usually presents as vesicles near the mouth,nose,and periocular sites.In contrast,we observed a new facial symptom of herpes on the entire face without vesicles.CASE SUMMARY A 33-year-old woman with a history of varicella infection and shingles since an early age presented with sarcoidosis of the entire face and neuralgia without oral lesions.The patient was prescribed antiviral treatment with valacyclovir and acyclovir cream.One day after drug administration,facial skin lesions and neurological pain improved.Herpes simplex without oral blisters can easily be misdiagnosed as pimples upon visual examination in an outpatient clinic.CONCLUSION As acute herpes simplex is accompanied by neuralgia,prompt diagnosis and prescription are necessary,considering the pathological history and health conditions.
文摘Congenital unilateral lower lip palsy(CULLP),or congenital hypoplasia of the depressor anguli oris muscle,also known as asymmetric crying facies,is a rare condition that results in asymmetry of the lower lip during smiling,laughing,and crying.Although the etiology is unknown,weakness of the depressor labii inferioris(DLI)muscle is implicated as a contributing factor.Currently,no well-established treatment options are available.This case report describes an 18-year-old male patient diagnosed with CULLP.Physical examination revealed a symmetric face at rest,but asymmetry when smiling and opening the mouth.Following the administration of lidocaine into the affected DLI muscle,the patient’s smile and lower lip symmetry were immediately restored without any adverse effects.Subsequently,administration of botulinum toxin for neuromodulation of the DLI muscle led to a significant improvement in symmetry and oral function within 2 weeks,which was sustained at 1 month and 3 months post-treatment.No adverse effects were reported,and both patients and families expressed high satisfaction with the outcomes.This case highlights the potential use of neuromodulation as a minimally invasive and effective treatment for CULLP.
文摘Background: The ear and face are indispensable and distinctive features for hearing and identification. Objectives: This study was designed to generate anthropometric data of the ear and facial indices of females of Efik and Ibibio children in Cross River and Akwa Ibom States, show morphological and aesthetic differences and ethnicity. Methods: A total of 600 female children (300 Efiks and 300 Ibibios) aged 2 to 10 years that met the inclusion criteria were chosen from selected primary schools in Calabar Municipality, Calabar South of Cross River State and from Uyo, Itu of Akwa Ibom State, Nigeria. Standardized measurements of face length, face width, ear length, and ear width were taken with a spreading caliper;the facial (proscopic) and ear (auricular) indices were determined. Results: Efik subjects presented a mean face length of 8.36 ± 0.06 cm, face width of 11.04 ± 0.04 cm, ear length of 4.92 ± 0.02 cm, and ear width of 3.06 ± 0.01 cm. Ibibio subjects had mean values for face length, face width, ear length, and ear width as 8.17 ± 0.05 cm, 10.75 ± 0.05 cm, 4.77 ± 0.03 cm, and 2.94 ± 0.02 cm respectively. The mean facial index and ear index for Efik subjects were 75.68 ± 0.31 and 62.16 ± 0.27 respectively;while the mean facial and ear indices for Ibibio subjects were 74.79 ± 0.36 and 61.80 ± 0.34 respectively. Statistical analysis demonstrated significant differences in face length, ear length, ear width and facial index, with the Efik subjects having higher values than Ibibio subjects (p Conclusion: The results showed hypereuryproscopic face as the prevalent face type among females of both ethnic groups, therefore can be of importance in sex, ethnic, and racial differentiation, and in clinical practice, aesthetics and forensic medicine.
文摘Bipolar disorder is a serious mental condition that may be caused by any kind of stress or emotional upset experienced by the patient.It affects a large percentage of people globally,who fluctuate between depression and mania,or vice versa.A pleasant or unpleasant mood is more than a reflection of a state of mind.Normally,it is a difficult task to analyze through physical examination due to a large patient-psychiatrist ratio,so automated procedures are the best options to diagnose and verify the severity of bipolar.In this research work,facial microexpressions have been used for bipolar detection using the proposed Convolutional Neural Network(CNN)-based model.Facial Action Coding System(FACS)is used to extract micro-expressions called Action Units(AUs)connected with sad,happy,and angry emotions.Experiments have been conducted on a dataset collected from Bahawal Victoria Hospital,Bahawalpur,Pakistan,Using the Patient Health Questionnaire-15(PHQ-15)to infer a patient’s mental state.The experimental results showed a validation accuracy of 98.99%for the proposed CNN modelwhile classification through extracted featuresUsing SupportVectorMachines(SVM),K-NearestNeighbour(KNN),and Decision Tree(DT)obtained 99.9%,98.7%,and 98.9%accuracy,respectively.Overall,the outcomes demonstrated the stated method’s superiority over the current best practices.
文摘To thoroughly understand market opportunity of freeze-dried facial mask and deeply get insight of consumers’usage behavior and needs,evaluate sensory feelings of 10 screened commercial freeze-dried facial mask products,group test products according to the differences of sensory attributions via Principal Component Analysis(PCA)and Agglomerative Hierarchical Clustering(AHC),pick up the representative products.Freeze-dried facial mask users evaluate satisfaction degree of picked up products and participate survey of usage behavior/cognition.Analyze consumer data by AHC to get consumer segmentations and their profile.The test results show that,sensory data and consumer data,which is from consumers test of screened representative products by performing PCA and AHC on sensory data,can be verified mutually.It is helpful to understand the needs of consumer segmentations and reason to buy by combining sensory data and consumer test.
文摘Background: Maxillofacial trauma affects young adults more. The injury assessment is difficult to establish in low-income countries because of the imaging means, particularly the scanner, which is poorly available and less financially accessible. The aim of this study is to describe the epidemiological profile and the various tomodensitometric aspects of traumatic lesions of the face in patients received in the Radiology department of Kira Hospital. Patients and methods: This is a descriptive retrospective study involving 104 patients of all ages over a period of 2 years from December 2018 to November 2019 in the medical imaging department of KIRA HOSPITAL. We included in our study any patient having undergone a CT scan of the head and presenting at least one lesion of the facial mass, whether associated with other cranioencephalic lesions. Results: Among the 384 patients received for head trauma, 104 patients (27.1% of cases) presented facial damage. The average age of our patients was 32.02 years with extremes of 8 months and 79 years. In our study, 87 of the patients (83.6%) were male. The road accident was the circumstance in which facial trauma occurred in 79 patients (76% of cases). These injuries were accompanied by at least one bone fracture in 97 patients (93.3%). Patients with fractures of more than 3 facial bones accounted for 40.2% of cases and those with fractures of 2 to 3 bones accounted for 44.6% of cases. The midface was the site of the fracture in 85 patients (87.6% of cases). Orbital wall fractures were noted in 57 patients (58.8% of cases) and the jawbone was the site of a fracture in 50 patients (51.5% of cases). In the vault, the fractures involved the extra-facial frontal bone (36.1% of cases) and temporal bone (18.6% of cases). Cerebral contusion was noted in 41.2% of patients and pneumoencephaly in 15.5% of patients. Extradural hematoma was present in 16 patients and subdural hematoma affected 13 patients. Conclusion: Computed tomography is a diagnostic tool of choice in facial trauma patients. Most of these young patients present with multiple fractures localizing to the mid-level of the face with concomitant involvement of the brain.
文摘Apart from listening to the cry of a healthy newborn,it is the declaration by the attending paediatrician in the labour room that the child is normal which brings utmost joy to parents.The global incidence of children born with congenital anomalies has been reported to be 3%-6%with more than 90%of these occurring in low-and middle-income group countries.The exact percentages/total numbers of children requiring surgical treatment cannot be estimated for several reasons.These children are operated under several surgical disciplines,viz,paediatric-,plastic reconstructive,neuro-,cardiothoracic-,orthopaedic surgery etc.These conditions may be life-threatening,e.g.,trachea-oesophageal fistula,critical pulmonary stenosis,etc.and require immediate surgical intervention.Some,e.g.,hydrocephalus,may need intervention as soon as the patient is fit for surgery.Some,e.g.,patent ductus arteriosus need‘wait and watch’policy up to a certain age in the hope of spontaneous recovery.Another extremely important category is that of patients where the operative intervention is done based on their age.Almost all the congenital anomalies coming under care of a plastic surgeon are operated as elective surgery(many as multiple stages of correction)at appropriate ages.There are advantages and disadvantages of intervention at different ages.In this article,we present a review of optimal timings,along with reasoning,for surgery of many of the common congenital anomalies which are treated by plastic surgeons.Obstetricians,paediatricians and general practitioners/family physicians,who most often are the first ones to come across such children,must know to guide the parents appropriately and convincingly impress upon the them as to why their child should not be operated immediately and also the consequences of too soon or too late.
文摘To evaluate the efficacy of online learning and explore the impact of long-term use of electronic products on facial skin as well as eyes.A cross-sectional survey was conducted to 180 sophomores in Xi′an Jiaotong University by cluster random sampling from September to October 2021.The questionnaire covering study condition,skin lesion and Ocular Surface Disease Index.χ_(2) test was used to compare the facial skin condition among different groups,and spearman correlation test was used to test the correlation of rank data.During online education,students′learning pressure is reduced,their autonomy is improved,and the learning efficiency is reduced.There were differences in the incidence of facial itching and papules among different groups.Duration of use of electronic products was positively correlated with the facial itching,with an r value of 0.231(P<0.05);the proportion of pigmentation in non-blue light protection groups(12.8%)was higher than that in blue light protection groups(1.7%),the difference was statistically significant(χ_(2)=8.384,P<0.05).The prevalence of dry eye among college students is 66.7%,and the proportion of moderate to severe dry eye is 34.5%.The study autonomy has been improved during online teaching.Long-term use of electronic products and no blue light protection have an impact on facial skin.Students should enhance the knowledge of skin-care and eye-care and develop better habits.
文摘Background:More and more consumers are paying attention to skin rejuvenation.However,there is a lack of a non-invasive and efficient solution.Objective:To evaluate the efficacy of a trinity permeation synergism(TPS),which consists of a firming essence,an atomizer and a photoelectric penetrator,for facial anti-aging efficacy.Material and methods:In this work,in vitro cell experiments and human efficacy study were used to evaluate the firming and anti-wrinkle effects.Cell experiments were used to verify the effect of the firming essence on the cell proliferation,migration,and anti-inflammation in keratinocytes(HaCaT),and on the gene expression levels of type I and type III collagen(Col-1 and Col-3)and type I matrix metalloproteinase(MMP-1)in human skin fibroblasts(HSF).After in vitro test,60 women aged 35–60 years were enrolled in the randomized test,of which 30 subjects were randomly selected to be the experimental group and treated with the TPS system,while the left 30 subjects were treated with the firming essence only considered as control.After 28 days,skin elasticity,skin redness value,and skin wrinkles were measured to evaluate the efficacy of the TPS system.Results:Cell experiments showed that the firming essence can significantly improve the proliferation and the migration of HaCaT cells.It also promoted the expression level of Col-1 and Col-3 gene,and inhibited the expression level of MMP-1 gene in HSF cells.After confirming the efficacy of firming essence,the efficacy benefit of the TPS was further studied.The 28-day tests show that combined use firming essence with atomizer and penetrator can significantly increase skin elasticity,reduce skin hemoglobin value and skin wrinkles on Day 28.Moreover,all the mentioned improvements are significantly better than that in the control group.Conclusion:Through efficient delivery in the whole process,TPS boosts the efficacy of active components in the firming essence.TPS offers an efficient,non-invasive,and convenient way for enhanced facial rejuvenation efficacy.
文摘Introduction: Peripheral facial palsy (PFP) is a frequent reason for ENT consultations. It is a common complication of human immunodeficiency virus (HIV) infection. The aim of this study was to describe the diagnostic and therapeutic aspects and to establish the correlation between PFP and HIV in our context. Patients and Method: This was a retrospective descriptive study conducted in the ENT and CFS department of the HIAOBO, covering the medical records of patients hospitalized for taking a PFP on HIV terrain from January 1, 2016 to December 31, 2020. Results: The study involved 17 patients, 10 men (59%) and 7 women (41%), a sex ratio of 1.4. The average age was 39 years with the extremes of 11 and 69 years. Shopkeepers reported 9 cases (53%). The reason for consultation was facial asymmetry in 11 cases (100%). The delay in consultation during the first week was 82.4%. Clinical signs were unilateral facial asymmetry, the opening of the palpebral fissure and lacrimation. All patients received medical treatment for PFP and HIV. Evolution was favorable, with complete recovery and no sequelae in 82.4% of cases. Surgery was performed in one case. Conclusion: PFPs are common in HIV infection. Diagnosis is clinical and management is multidisciplinary. Progression depends on the length of time taken to treat the disease.