The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the...The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.展开更多
develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining...develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526.展开更多
We study the two-stage stochastic facility location problem(2-SFLP)by proposing an LP(location problem)-rounding approximation algorithm with 2.3613 per-scenario bound for this problem,improving the previously best pe...We study the two-stage stochastic facility location problem(2-SFLP)by proposing an LP(location problem)-rounding approximation algorithm with 2.3613 per-scenario bound for this problem,improving the previously best per-scenario bound of 2.4957.展开更多
In this paper, we study the dynamic facility location problem with submodular penalties (DFLPSP). We present a combinatorial primal-dual 3-approximation algorithm for the DFLPSP.
In this paper, we consider the fault-tolerant concave facility location problem (FTCFL) with uniform requirements. By investigating the structure of the FTCFL, we obtain a modified dual-fitting bifactor approximatio...In this paper, we consider the fault-tolerant concave facility location problem (FTCFL) with uniform requirements. By investigating the structure of the FTCFL, we obtain a modified dual-fitting bifactor approximation algorithm. Combining the scaling and greedy argumentation technique, the approximation factor is proved to be 1.52.展开更多
In this paper,we study a stochastic version of the fault-tolerant facility location problem.By exploiting the stochastic structure,we propose a 5-approximation algorithm which uses the LP-rounding technique based on t...In this paper,we study a stochastic version of the fault-tolerant facility location problem.By exploiting the stochastic structure,we propose a 5-approximation algorithm which uses the LP-rounding technique based on the revised optimal solution to the linear programming relaxation of the stochastic fault-tolerant facility location problem.展开更多
The artificial bee colony(ABC)algorithm is an evolutionary optimization algorithm based on swarm intelligence and inspired by the honey bees’food search behavior.Since the ABC algorithm has been developed to achieve ...The artificial bee colony(ABC)algorithm is an evolutionary optimization algorithm based on swarm intelligence and inspired by the honey bees’food search behavior.Since the ABC algorithm has been developed to achieve optimal solutions by searching in the continuous search space,modification is required to apply it to binary optimization problems.In this study,we modify the ABC algorithm to solve binary optimization problems and name it the improved binary ABC(IbinABC).The proposed method consists of an update mechanism based on fitness values and the selection of different decision variables.Therefore,we aim to prevent the ABC algorithm from getting stuck in a local minimum by increasing its exploration ability.We compare the IbinABC algorithm with three variants of the ABC and other meta-heuristic algorithms in the literature.For comparison,we use the well-known OR-Library dataset containing 15 problem instances prepared for the uncapacitated facility location problem.Computational results show that the proposed algorithm is superior to the others in terms of convergence speed and robustness.The source code of the algorithm is available at https://github.com/rafetdurgut/ibinABC.展开更多
文摘The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.
基金supported by the National Natural Science Foundation of China under Grant No.11371001
文摘develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526.
基金supported by National Natural Science Foundation of China (Grant No. 11371001)the Natural Sciences and Engineering Research Council of Canada (Grant No. 283106)China Scholarship Council
文摘We study the two-stage stochastic facility location problem(2-SFLP)by proposing an LP(location problem)-rounding approximation algorithm with 2.3613 per-scenario bound for this problem,improving the previously best per-scenario bound of 2.4957.
基金Supported in part by Hebei Province Department of Education Fund under Grant No.Z2012017the National Natural Science Foundation of China under Grant No.11371001 and 11201013
文摘In this paper, we study the dynamic facility location problem with submodular penalties (DFLPSP). We present a combinatorial primal-dual 3-approximation algorithm for the DFLPSP.
基金Supported by the National Natural Science Foundation of China (No. 60773185, 11071268, 10871144)Beijing Natural Science Foundation (No. 1102001)
文摘In this paper, we consider the fault-tolerant concave facility location problem (FTCFL) with uniform requirements. By investigating the structure of the FTCFL, we obtain a modified dual-fitting bifactor approximation algorithm. Combining the scaling and greedy argumentation technique, the approximation factor is proved to be 1.52.
基金C.Wu was supported by National Natural Science Foundation of China(Grant No.11071268)D.Xu was supported by National Natural Science Foundation of China(Grant No.11371001)+2 种基金Scientific Research Common Program of Beijing Municipal Commission of Education(Grant No.KM201210005033)China Scholarship Council.J.Shu was supported by National Natural Science Foundation of China(Grant Nos.70801014,71171047,and 71222103)The authors would like to thank the two anonymous referees for many helpful suggestions.
文摘In this paper,we study a stochastic version of the fault-tolerant facility location problem.By exploiting the stochastic structure,we propose a 5-approximation algorithm which uses the LP-rounding technique based on the revised optimal solution to the linear programming relaxation of the stochastic fault-tolerant facility location problem.
文摘The artificial bee colony(ABC)algorithm is an evolutionary optimization algorithm based on swarm intelligence and inspired by the honey bees’food search behavior.Since the ABC algorithm has been developed to achieve optimal solutions by searching in the continuous search space,modification is required to apply it to binary optimization problems.In this study,we modify the ABC algorithm to solve binary optimization problems and name it the improved binary ABC(IbinABC).The proposed method consists of an update mechanism based on fitness values and the selection of different decision variables.Therefore,we aim to prevent the ABC algorithm from getting stuck in a local minimum by increasing its exploration ability.We compare the IbinABC algorithm with three variants of the ABC and other meta-heuristic algorithms in the literature.For comparison,we use the well-known OR-Library dataset containing 15 problem instances prepared for the uncapacitated facility location problem.Computational results show that the proposed algorithm is superior to the others in terms of convergence speed and robustness.The source code of the algorithm is available at https://github.com/rafetdurgut/ibinABC.