BACKGROUND Pediatric appendicitis is a common cause of abdominal pain in children and is recognized as a significant surgical emergency.A prompt and accurate diagnosis is essential to prevent complications such as per...BACKGROUND Pediatric appendicitis is a common cause of abdominal pain in children and is recognized as a significant surgical emergency.A prompt and accurate diagnosis is essential to prevent complications such as perforation and peritonitis.AIM To investigate the predictive value of the systemic immune-inflammation index(SII)combined with the pediatric appendicitis score(PAS)for the assessment of disease severity and surgical outcomes in children aged 5 years and older with appendicitis.METHODS Clinical data of 104 children diagnosed with acute appendicitis were analyzed.The participants were categorized into the acute appendicitis group and chronic appendicitis group based on disease presentation and further stratified into the good prognosis group and poor prognosis group based on prognosis.The SII and PAS were measured,and a joint model using the combined SII and PAS was constructed to predict disease severity and surgical outcomes.RESULTS Significant differences were observed in the SII and PAS parameters between the acute appendicitis group and chronic appendicitis group.Correlation analysis showed associations among the SII,PAS,and disease severity,with the combined SII and PAS model demonstrating significant predictive value for assessing disease severity[aera under the curve(AUC)=0.914]and predicting surgical outcomes(AUC=0.857)in children aged 5 years and older with appendicitis.CONCLUSION The study findings support the potential of integrating the SII with the PAS for assessing disease severity and predicting surgical outcomes in pediatric appendicitis,indicating the clinical utility of the combined SII and PAS model in guiding clinical decision-making and optimizing surgical management strategies for pediatric patients with appendicitis.展开更多
With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is...With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is more critical in maintaining system reliable and security operations. Latest developed information and communication technologies provide a platform to enhance the functions and performance of power system control center. Smart power dispatch concept will be the trend of future control center development. In this paper, we start from the human factors of control center design and propose operation indices to reduce the information presented to the system operator. The operation indices will be the important criteria in situation awareness of a power grid. Past, present, future and capability states of a power grid are also proposed to provide better visions to the operator of system conditions. The basic ideas of operation indices and operation states are discussed in the paper. In the end, the design factors for a power dispatch cockpit are discussed.展开更多
Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huangg...Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.展开更多
In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is c...In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is considered respectively. In detail, by using operator based robust right coprime factorization approach, the control system design structures including feedforward and feedback controllers for both SISO and MIMO nonlinear uncertain systems are given, respectively.In which, the controller design includes the information of PI hysteresis and its inverse, and some sufficient conditions for the controllers in both SISO and MIMO systems should be satisfied are also derived respectively. Based on the proposed conditions, influence from hysteresis is rejected, the systems are robustly stable and output tracking performance can be realized.Finally, the effectiveness of the proposed method is confirmed by numerical simulations.展开更多
文摘BACKGROUND Pediatric appendicitis is a common cause of abdominal pain in children and is recognized as a significant surgical emergency.A prompt and accurate diagnosis is essential to prevent complications such as perforation and peritonitis.AIM To investigate the predictive value of the systemic immune-inflammation index(SII)combined with the pediatric appendicitis score(PAS)for the assessment of disease severity and surgical outcomes in children aged 5 years and older with appendicitis.METHODS Clinical data of 104 children diagnosed with acute appendicitis were analyzed.The participants were categorized into the acute appendicitis group and chronic appendicitis group based on disease presentation and further stratified into the good prognosis group and poor prognosis group based on prognosis.The SII and PAS were measured,and a joint model using the combined SII and PAS was constructed to predict disease severity and surgical outcomes.RESULTS Significant differences were observed in the SII and PAS parameters between the acute appendicitis group and chronic appendicitis group.Correlation analysis showed associations among the SII,PAS,and disease severity,with the combined SII and PAS model demonstrating significant predictive value for assessing disease severity[aera under the curve(AUC)=0.914]and predicting surgical outcomes(AUC=0.857)in children aged 5 years and older with appendicitis.CONCLUSION The study findings support the potential of integrating the SII with the PAS for assessing disease severity and predicting surgical outcomes in pediatric appendicitis,indicating the clinical utility of the combined SII and PAS model in guiding clinical decision-making and optimizing surgical management strategies for pediatric patients with appendicitis.
文摘With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is more critical in maintaining system reliable and security operations. Latest developed information and communication technologies provide a platform to enhance the functions and performance of power system control center. Smart power dispatch concept will be the trend of future control center development. In this paper, we start from the human factors of control center design and propose operation indices to reduce the information presented to the system operator. The operation indices will be the important criteria in situation awareness of a power grid. Past, present, future and capability states of a power grid are also proposed to provide better visions to the operator of system conditions. The basic ideas of operation indices and operation states are discussed in the paper. In the end, the design factors for a power dispatch cockpit are discussed.
基金supported by the NSFC HSR Fundamental Research Joint Fund (Grant No.U1934213)。
文摘Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.
基金supported by the National Natural Science Foundation of China(61203229)
文摘In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is considered respectively. In detail, by using operator based robust right coprime factorization approach, the control system design structures including feedforward and feedback controllers for both SISO and MIMO nonlinear uncertain systems are given, respectively.In which, the controller design includes the information of PI hysteresis and its inverse, and some sufficient conditions for the controllers in both SISO and MIMO systems should be satisfied are also derived respectively. Based on the proposed conditions, influence from hysteresis is rejected, the systems are robustly stable and output tracking performance can be realized.Finally, the effectiveness of the proposed method is confirmed by numerical simulations.