Atmospheric particulate matter(PM2.5) seriously influences air quality. It is considered one of the main environmental triggers for lung and heart diseases. Air pollutants can be adsorbed by forest. In this study we i...Atmospheric particulate matter(PM2.5) seriously influences air quality. It is considered one of the main environmental triggers for lung and heart diseases. Air pollutants can be adsorbed by forest. In this study we investigated the effect of forest cover on urban PM2.5 concentrations in 12 cities in Heilongjiang Province,China. The forest cover in each city was constant throughout the study period. The average daily concentration of PM2.5 in 12 cities was below 75 lg/m^3 during the non-heating period but exceeded this level during heating period. Furthermore, there were more moderate pollution days in six cities. This indicated that forests had the ability to reduce the concentration of PM2.5 but the main cause of air pollution was excessive human interference and artificial heating in winter. We classified the 12 cities according to the average PM2.5 concentrations. The relationship between PM2.5 concentrations and forest cover was obtained by integrating forest cover, land area,heated areas and number of vehicles in cities. Finally,considering the complexity of PM2.5 formation and based on the theory of random forestry, we selected six cities and analyzed their meteorological and air pollutant data. The main factors affecting PM2.5 concentrations were PM10,NO_2, CO and SO_2 in air pollutants while meteorological factors were secondary.展开更多
Forest fires are influenced by several factors,including forest location,species type,age and density,date of fire occurrence,temperatures,and wind speeds,among others.This study investigates the quantitative effects ...Forest fires are influenced by several factors,including forest location,species type,age and density,date of fire occurrence,temperatures,and wind speeds,among others.This study investigates the quantitative effects of these factors on the degree of forest fire disaster using nonparametric statistical methods to provide a theoretical basis and data support for forest fire management.Data on forest fire damage from 1969 to 2013 was analyzed.The results indicate that different forest locations and types,fire occurrence dates,temperatures,and wind speeds were statistically significant.The eastern regions of the study area experienced the highest fire occurrence,accounting for 85.0%of the total number of fires as well as the largest average forested area burned.April,May,and October had more frequent fires than other months,accounting for 78.9%,while September had the most extensive forested area burned(63.08 ha)and burnt area(106.34 ha).Hardwood mixed forest and oak forest had more frequent fires,accounting for 31.9%and 26.0%,respectively.Hardwood-conifer mixed forest had the most forested area burned(50.18 ha)and burnt area(65.09 ha).Temperatures,wind speeds,and their interaction had significant impacts on forested area burned and area burnt.展开更多
基金supported by the Natural Science Foundation of Heilongjiang Province,China(Grant No.G2016001)
文摘Atmospheric particulate matter(PM2.5) seriously influences air quality. It is considered one of the main environmental triggers for lung and heart diseases. Air pollutants can be adsorbed by forest. In this study we investigated the effect of forest cover on urban PM2.5 concentrations in 12 cities in Heilongjiang Province,China. The forest cover in each city was constant throughout the study period. The average daily concentration of PM2.5 in 12 cities was below 75 lg/m^3 during the non-heating period but exceeded this level during heating period. Furthermore, there were more moderate pollution days in six cities. This indicated that forests had the ability to reduce the concentration of PM2.5 but the main cause of air pollution was excessive human interference and artificial heating in winter. We classified the 12 cities according to the average PM2.5 concentrations. The relationship between PM2.5 concentrations and forest cover was obtained by integrating forest cover, land area,heated areas and number of vehicles in cities. Finally,considering the complexity of PM2.5 formation and based on the theory of random forestry, we selected six cities and analyzed their meteorological and air pollutant data. The main factors affecting PM2.5 concentrations were PM10,NO_2, CO and SO_2 in air pollutants while meteorological factors were secondary.
基金supported financially by the National Key Research and Development Plan(2018YFD0600205)China’s National Foundation of Natural Sciences(31470497)the Project of Jilin Province Department of Education(JJKH20180347KJ)
文摘Forest fires are influenced by several factors,including forest location,species type,age and density,date of fire occurrence,temperatures,and wind speeds,among others.This study investigates the quantitative effects of these factors on the degree of forest fire disaster using nonparametric statistical methods to provide a theoretical basis and data support for forest fire management.Data on forest fire damage from 1969 to 2013 was analyzed.The results indicate that different forest locations and types,fire occurrence dates,temperatures,and wind speeds were statistically significant.The eastern regions of the study area experienced the highest fire occurrence,accounting for 85.0%of the total number of fires as well as the largest average forested area burned.April,May,and October had more frequent fires than other months,accounting for 78.9%,while September had the most extensive forested area burned(63.08 ha)and burnt area(106.34 ha).Hardwood mixed forest and oak forest had more frequent fires,accounting for 31.9%and 26.0%,respectively.Hardwood-conifer mixed forest had the most forested area burned(50.18 ha)and burnt area(65.09 ha).Temperatures,wind speeds,and their interaction had significant impacts on forested area burned and area burnt.