期刊文献+
共找到2,489篇文章
< 1 2 125 >
每页显示 20 50 100
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
1
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models Local discontinuous galerkin(LDG)scheme Convex splitting method Variant energy quadratization method Scalar auxiliary variable method Spectral deferred correction method
下载PDF
Bound-Preserving Discontinuous Galerkin Methods with Modified Patankar Time Integrations for Chemical Reacting Flows
2
作者 Fangyao Zhu Juntao Huang Yang Yang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期190-217,共28页
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e... In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes. 展开更多
关键词 Compressible Euler equations Chemical reacting flows Bound-preserving Discontinuous galerkin(DG)method Modified Patankar method
下载PDF
Superconvergence of Direct Discontinuous Galerkin Methods:Eigen-structure Analysis Based on Fourier Approach
3
作者 Xuechun Liu Haijin Wang +1 位作者 Jue Yan Xinghui Zhong 《Communications on Applied Mathematics and Computation》 EI 2024年第1期257-278,共22页
This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq... This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results. 展开更多
关键词 Direct discontinuous galerkin(DDG)method with interface correction Symmetric DDG method SUPERCONVERGENCE Fourier analysis Eigen-structure
下载PDF
Numerical Investigations on the Resonance Errors of Multiscale Discontinuous Galerkin Methods for One-Dimensional Stationary Schrödinger Equation
4
作者 Bo Dong Wei Wang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期311-324,共14页
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al... In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers. 展开更多
关键词 Discontinuous galerkin(DG)method Multiscale method Resonance errors One-dimensional Schrödinger equation
下载PDF
Wavelet Multi-Resolution Interpolation Galerkin Method for Linear Singularly Perturbed Boundary Value Problems
5
作者 Jiaqun Wang Guanxu Pan +1 位作者 Youhe Zhou Xiaojing Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期297-318,共22页
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r... In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5. 展开更多
关键词 Wavelet multi-resolution interpolation galerkin singularly perturbed boundary value problems mesh-free method Shishkin node boundary layer
下载PDF
A Provable Positivity-Preserving Local Discontinuous Galerkin Method for the Viscous and Resistive MHD Equations
6
作者 Mengjiao Jiao Yan Jiang Mengping Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期279-310,共32页
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver... In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes. 展开更多
关键词 Viscous and resistive MHD equations Positivity-preserving Discontinuous galerkin(DG)method High order accuracy
下载PDF
A Local Macroscopic Conservative(LoMaC)Low Rank Tensor Method with the Discontinuous Galerkin Method for the Vlasov Dynamics
7
作者 Wei Guo Jannatul Ferdous Ema Jing-Mei Qiu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期550-575,共26页
In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.... In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method. 展开更多
关键词 Hierarchical Tucker(HT)decomposition Conservative SVD Energy conservation Discontinuous galerkin(DG)method
下载PDF
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
8
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous galerkin finite element method
下载PDF
NUMERICAL INVESTIGATION OF TOROIDAL SHOCK WAVES FOCUSING USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:2
9
作者 陈二云 赵改平 +1 位作者 卓文涛 杨爱玲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期9-15,共7页
A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations.... A numerical simulation of the toroidal shock wave focusing in a co-axial cylindrical shock tube is inves- tigated by using discontinuous Galerkin (DG) finite element method to solve the axisymmetric Euler equations. For validating the numerical method, the shock-tube problem with exact solution is computed, and the computed results agree well with the exact cases. Then, several cases with higher incident Mach numbers varying from 2.0 to 5.0 are simulated. Simulation results show that complicated flow-field structures of toroidal shock wave diffraction, reflection, and focusing in a co-axial cylindrical shock tube can be obtained at different incident Mach numbers and the numerical solutions appear steep gradients near the focusing point, which illustrates the DG method has higher accuracy and better resolution near the discontinuous point. Moreover, the focusing peak pres- sure with different grid scales is compared. 展开更多
关键词 shock wave focusing spherical double Math reflection discontinuous galerkin finite element method
下载PDF
一种基于局部间断Galerkin方法的IC互连线电容提取策略
10
作者 朱洪强 邵如梦 +3 位作者 赵郑豪 杨航 汤谨溥 蔡志匡 《微电子学》 CAS 北大核心 2024年第1期127-133,共7页
求解椭圆方程的局部间断Galerkin(LDG)方法具有精度高、并行效率高的优点,且能适用于各种网格。文章提出采用LDG方法来求解IC版图中电势分布函数满足的Laplace方程,从而给出了一个提取互连线电容的新方法。该问题的求解区域需要在矩形... 求解椭圆方程的局部间断Galerkin(LDG)方法具有精度高、并行效率高的优点,且能适用于各种网格。文章提出采用LDG方法来求解IC版图中电势分布函数满足的Laplace方程,从而给出了一个提取互连线电容的新方法。该问题的求解区域需要在矩形区域内部去掉数量不等的导体区域,在这种特殊的计算区域上,通过数值测试验证了LDG方法能达到理论的收敛阶。随着芯片制造工艺的发展,导体尺寸和间距也越来越小,给数值模拟带来新的问题。文章采用倍增网格剖分方法,大幅减小了计算单元数。对包含不同数量和形状导体的七个电路版图,用新方法提取互连线电容,得到的结果与商业工具给出的结果非常接近,表明了新方法的有效性。 展开更多
关键词 局部间断galerkin方法 寄生参数提取 互连线电容 集成电路工艺
下载PDF
耦合非线性薛定谔方程组孤立子解的局部间断Petrov-Galerkin方法数值模拟
11
作者 赵国忠 蔚喜军 《工程数学学报》 CSCD 北大核心 2024年第6期1109-1132,共24页
耦合非线性薛定谔方程组在量子物理、非线性光学、晶体物理、波色–爱因斯坦凝聚和水波动力学等很多物理领域有着重要的应用价值。提出了一种局部间断PetrovGalerkin方法。首先,将耦合非线性薛定谔方程组改写为一阶微分方程组。空间离... 耦合非线性薛定谔方程组在量子物理、非线性光学、晶体物理、波色–爱因斯坦凝聚和水波动力学等很多物理领域有着重要的应用价值。提出了一种局部间断PetrovGalerkin方法。首先,将耦合非线性薛定谔方程组改写为一阶微分方程组。空间离散采用间断Petrov-Galerkin方法,时间离散采用三阶总变差不增Runge-Kutta方法。数值实验表明,该算法对线性元和二次元都能达到最优收敛阶。通过数值算例计算了质量、动量和能量守恒量,该算法可以很好地模拟单孤立子传输、双孤立子碰撞和三孤立子碰撞现象。此外,该算法可以在较长的时间间隔内模拟复杂波型的相互作用或传播,还可以模拟孤子传输和孤子产生现象。 展开更多
关键词 局部间断Petrov-galerkin方法 耦合非线性薛定谔方程 孤立子碰撞 守恒量
下载PDF
An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems 被引量:15
12
作者 王聚丰 孙凤欣 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期53-59,共7页
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II... In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method. 展开更多
关键词 meshless method improved interpolating moving least-square method improved inter-polating element-free galerkin method potential problem
下载PDF
The dimension split element-free Galerkin method for three-dimensional potential problems 被引量:4
13
作者 Z.J.Meng H.Cheng +1 位作者 L.D.Ma Y.M.Cheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第3期462-474,共13页
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d... This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method. 展开更多
关键词 Dimension split method Improved moving least-squares (IMLS) approximation Improved element-free galerkin (IEFG) method Finite difference method (FDM) Dimension split element-free galerkin (DSEFG) method Potential problem
下载PDF
Adaptive element free Galerkin method applied to analysis of earthquake induced liquefaction 被引量:5
14
作者 荚颖 唐小微 +1 位作者 栾茂田 杨庆 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第2期217-224,共8页
An automatically adaptive element free method is presented to analyze the seismic response of liquefiable soils. The method is based on the element free Galerkin method (EFGM) and the fission procedure that is part ... An automatically adaptive element free method is presented to analyze the seismic response of liquefiable soils. The method is based on the element free Galerkin method (EFGM) and the fission procedure that is part of h-refinement, indicated by error estimation. In the proposed method, a posteriori error estimate procedure that depends on the energy norm of stress and the T-Belytschko (TB) stress recovery scheme is incorporated. The effective cyclic elasto-plastic constitutive model is used to describe the nonlinear behavior of the saturated soil. The governing equations are established by u-p formulation. The proposed method can effectively avoid the volumetric locking due to large deformation that usually occurs in numerical computations using the finite element method (FEM). The efficiency of the proposed method is demonstrated by evaluating the seismic response of an embankment and comparing it to results obtained through FEM. It is shown that the proposed method provides an accurate seismic analysis of saturated soil that includes the effects of liquefaction . 展开更多
关键词 adaptive element-free galerkin method soil liquefaction large deformation error estimation seismic response
下载PDF
CHARACTERISTIC GALERKIN METHOD FOR CONVECTION-DIFFUSION EQUATIONS AND IMPLICIT ALGORITHM USING PRECISE INTEGRATION 被引量:3
15
作者 李锡夔 武文华 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第4期371-382,共12页
This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec... This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability. 展开更多
关键词 convection-diffusion equation characteristic galerkin method finite element procedure precise integration implicit algorithm
下载PDF
Hermite WENO-based limiters for high order discontinuous Galerkin method on unstructured grids 被引量:4
16
作者 Zhen-Hua Jiang Chao Yan +1 位作者 Jian Yu Wu Yuan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期241-252,共12页
A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method o... A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids. The developed HWENO methodology utilizes high-order derivative information to keep WENO re- construction stencils in the von Neumann neighborhood. A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils, making higher-order scheme stable and simplifying the reconstruction process at the same time. The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement. Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy, the designed HWENO limiters can simul- taneously obtain uniform high order accuracy and sharp, es- sentially non-oscillatory shock transition. 展开更多
关键词 Discontinuous galerkin method LIMITERS WENO. High order accuracy. Unstructured grids
下载PDF
A new complex variable element-free Galerkin method for two-dimensional potential problems 被引量:4
17
作者 程玉民 王健菲 白福浓 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期43-52,共10页
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f... In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method. 展开更多
关键词 meshless method improved complex variable moving least-square approximation im- proved complex variable element-free galerkin method potential problem
下载PDF
NON-STANDARD GALERKIN METHODS OF HIGH ACCURACY FOR PARABOLIC PROBLEMS
18
作者 张书华 姜忠炳 翟瑞彩 《Transactions of Tianjin University》 EI CAS 1997年第1期68-72,共5页
In this paper we employ the Petrov Galerkin method for the parabolic problems to get the finite element approximate solution of high accuracy by means of the interpolation postprocessing, extrapolation and defect cor... In this paper we employ the Petrov Galerkin method for the parabolic problems to get the finite element approximate solution of high accuracy by means of the interpolation postprocessing, extrapolation and defect correction techniques. 展开更多
关键词 Petrov galerkin methods global superconvergence EXTRAPOLATION defect correction
下载PDF
ON THE BREAKDOWNS OF THE GALERKIN AND LEAST-SQUARES METHODS 被引量:2
19
作者 Zhong Baojiang(钟宝江) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第2期137-148,共12页
The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of t... The Galerkin and least-squares methods are two classes of the most popular Krylov subspace methOds for solving large linear systems of equations. Unfortunately, both the methods may suffer from serious breakdowns of the same type: In a breakdown situation the Galerkin method is unable to calculate an approximate solution, while the least-squares method, although does not really break down, is unsucessful in reducing the norm of its residual. In this paper we first establish a unified theorem which gives a relationship between breakdowns in the two methods. We further illustrate theoretically and experimentally that if the coefficient matrix of a lienar system is of high defectiveness with the associated eigenvalues less than 1, then the restarted Galerkin and least-squares methods will be in great risks of complete breakdowns. It appears that our findings may help to understand phenomena observed practically and to derive treatments for breakdowns of this type. 展开更多
关键词 large linear systems iterative methods Krylov subspace methods galerkin method least-squares method FOM GMRES breakdown stagnation restarting preconditioners.
下载PDF
Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method 被引量:3
20
作者 程玉民 刘超 +1 位作者 白福浓 彭妙娟 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期16-25,共10页
In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved c... In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods. 展开更多
关键词 meshless method complex variable moving least-squares approximation improved complex vari- able element-free galerkin method elastoplasticity
下载PDF
上一页 1 2 125 下一页 到第
使用帮助 返回顶部