The received satellite signal amplitude is attenuated greatly due to the strong ionospheric scintillation for lowlatitude regions, which causes the GPS tracking loop's loss of lock, the positioning errors to increase...The received satellite signal amplitude is attenuated greatly due to the strong ionospheric scintillation for lowlatitude regions, which causes the GPS tracking loop's loss of lock, the positioning errors to increase, and navigation to be interrupted. To solve the above problems, a novel signal processing algorithm is proposed based on the GPS L1 software receiver during strong ionospheric scintillation using the multi-channel intermediate frequency(IF) data sampling system. Tens of thousands of fading events are obtained based on the signal intensity measurement. The amplitude fading characteristics in the lowlatitude region are analyzed,including fading duration, time separation between fades and the numbers of signal intensity fading events. The fading thresholds are set to be 15 and 10 dB, respectively. The main fading time is very short in- 15 dB fading threshold, which generally is less than 20 ms. The main time separation between fades is less than 2 s in a single one-hour period from the time 23: 00 to 24: 00. Therefore, it has the characteristic of a short reacquisition time for the receiver designed to reduce the probability of simultaneous loss of lock for some satellites.Subsequently, the acquisition, tracking and PVT(position,velocity and time) calculations are completed by the customdesigned software receiver. The results show that the impact analysis of ionospheric scintillation on GPS amplitude attenuation in the lowlatitude region is helpful for designing the advanced tracking algorithm and to improve the robustness and accuracy of the GPS receiver.展开更多
基金The National Natural Science Foundation for Young Scholars(No.51405203)Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-Aged Teachers and Presidentsthe Natural Science Foundation of Jiangsu Province(No.BK20160699)
文摘The received satellite signal amplitude is attenuated greatly due to the strong ionospheric scintillation for lowlatitude regions, which causes the GPS tracking loop's loss of lock, the positioning errors to increase, and navigation to be interrupted. To solve the above problems, a novel signal processing algorithm is proposed based on the GPS L1 software receiver during strong ionospheric scintillation using the multi-channel intermediate frequency(IF) data sampling system. Tens of thousands of fading events are obtained based on the signal intensity measurement. The amplitude fading characteristics in the lowlatitude region are analyzed,including fading duration, time separation between fades and the numbers of signal intensity fading events. The fading thresholds are set to be 15 and 10 dB, respectively. The main fading time is very short in- 15 dB fading threshold, which generally is less than 20 ms. The main time separation between fades is less than 2 s in a single one-hour period from the time 23: 00 to 24: 00. Therefore, it has the characteristic of a short reacquisition time for the receiver designed to reduce the probability of simultaneous loss of lock for some satellites.Subsequently, the acquisition, tracking and PVT(position,velocity and time) calculations are completed by the customdesigned software receiver. The results show that the impact analysis of ionospheric scintillation on GPS amplitude attenuation in the lowlatitude region is helpful for designing the advanced tracking algorithm and to improve the robustness and accuracy of the GPS receiver.