In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin app...In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin approximation and weak compactness theory.展开更多
Global in time weak solutions to the α-model regularization for the three dimensional Euler-Poisson equations are considered in this paper. We prove the existence of global weak solutions to α-model regularization f...Global in time weak solutions to the α-model regularization for the three dimensional Euler-Poisson equations are considered in this paper. We prove the existence of global weak solutions to α-model regularization for the three dimension compressible EulerPoisson equations by using the Fadeo-Galerkin method and the compactness arguments on the condition that the adiabatic constant satisfies γ >4/3.展开更多
文摘In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin approximation and weak compactness theory.
基金supported by National Science Foundation of China (11901020)Beijing Natural Science Foundation (1204026)the Science and Technology Project of Beijing Municipal Commission of Education China (KM202010005027)。
文摘Global in time weak solutions to the α-model regularization for the three dimensional Euler-Poisson equations are considered in this paper. We prove the existence of global weak solutions to α-model regularization for the three dimension compressible EulerPoisson equations by using the Fadeo-Galerkin method and the compactness arguments on the condition that the adiabatic constant satisfies γ >4/3.