期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Prediction on Failure Pressure of Pipeline Containing Corrosion Defects Based on ISSA-BPNNModel
1
作者 Qi Zhuang Dong Liu Zhuo Chen 《Energy Engineering》 EI 2024年第3期821-834,共14页
Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety man... Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance. 展开更多
关键词 Oil and gas pipeline corrosion defect failure pressure prediction sparrow search algorithm BP neural network logistic chaotic map
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部