期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Drill bit wear monitoring and failure prediction for mining automation 被引量:3
1
作者 Hamed Rafezi Ferri Hassani 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期289-296,共8页
This article introduces a novel approach for tricone bit wear condition monitoring and failure prediction for surface mining applications.A successful bit health monitoring system is essential to achieve fully autonom... This article introduces a novel approach for tricone bit wear condition monitoring and failure prediction for surface mining applications.A successful bit health monitoring system is essential to achieve fully autonomous blasthole drilling.In this research in-situ vibration signals were analyzed in timefrequency domain and signals trend during tricone bit life span were investigated and introduced to support the development of artificial intelligence(AI)models.In addition to the signal statistical features,wavelet packet energy distribution proved to be a powerful indicator for bit wear assessment.Backpropagation artificial neural network(ANN)models were designed,trained and evaluated for bit state classification.Finally,an ANN architecture and feature vector were introduced to classify the bit condition and predict the bit failure. 展开更多
关键词 Drilling vibration Condition monitoring failure prediction Bit wear Wavelet energy Mining automation
下载PDF
Improved Metaheuristic Based Failure Prediction with Migration Optimization in Cloud Environment
2
作者 K.Karthikeyan Liyakathunisa +1 位作者 Eman Aljohani Thavavel Vaiyapuri 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1641-1654,共14页
Cloud data centers consume high volume of energy for processing and switching the servers among different modes.Virtual Machine(VM)migration enhances the performance of cloud servers in terms of energy efficiency,inte... Cloud data centers consume high volume of energy for processing and switching the servers among different modes.Virtual Machine(VM)migration enhances the performance of cloud servers in terms of energy efficiency,internal failures and availability.On the other end,energy utilization can be minimized by decreasing the number of active,underutilized sources which conversely reduces the dependability of the system.In VM migration process,the VMs are migrated from underutilized physical resources to other resources to minimize energy utilization and optimize the operations.In this view,the current study develops an Improved Metaheuristic Based Failure Prediction with Virtual Machine Migration Optimization(IMFP-VMMO)model in cloud environment.The major intention of the proposed IMFP-VMMO model is to reduce energy utilization with maximum performance in terms of failure prediction.To accomplish this,IMFPVMMO model employs Gradient Boosting Decision Tree(GBDT)classification model at initial stage for effectual prediction of VM failures.At the same time,VMs are optimally migrated using Quasi-Oppositional Artificial Fish Swarm Algorithm(QO-AFSA)which in turn reduces the energy consumption.The performance of the proposed IMFP-VMMO technique was validated and the results established the enhanced performance of the proposed model.The comparative study outcomes confirmed the better performance of the proposed IMFP-VMMO model over recent approaches. 展开更多
关键词 Cloud computing energy efficiency virtual machine migration failure prediction energy optimization metaheuristics
下载PDF
Failure Prediction for Scientific Workflows Using Nature-Inspired Machine Learning Approach
3
作者 S.Sridevi Jeevaa Katiravan 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期223-233,共11页
Scientific workflows have gained the emerging attention in sophisti-cated large-scale scientific problem-solving environments.The pay-per-use model of cloud,its scalability and dynamic deployment enables it suited for ex... Scientific workflows have gained the emerging attention in sophisti-cated large-scale scientific problem-solving environments.The pay-per-use model of cloud,its scalability and dynamic deployment enables it suited for executing scientific workflow applications.Since the cloud is not a utopian environment,failures are inevitable that may result in experiencingfluctuations in the delivered performance.Though a single task failure occurs in workflow based applications,due to its task dependency nature,the reliability of the overall system will be affected drastically.Hence rather than reactive fault-tolerant approaches,proactive measures are vital in scientific workflows.This work puts forth an attempt to con-centrate on the exploration issue of structuring a nature inspired metaheuristics-Intelligent Water Drops Algorithm(IWDA)combined with an efficient machine learning approach-Support Vector Regression(SVR)for task failure prognostica-tion which facilitates proactive fault-tolerance in the scheduling of scientific workflow applications.The failure prediction models in this study have been implemented through SVR-based machine learning approaches and the precision accuracy of prediction is optimized by IWDA and several performance metrics were evaluated on various benchmark workflows.The experimental results prove that the proposed proactive fault-tolerant approach performs better compared with the other existing techniques. 展开更多
关键词 failure prediction intelligent water drops support vector regression proactive fault-tolerance scientific workflows precision accuracy resource provisioning
下载PDF
A Novel Method of Heart Failure Prediction Based on DPCNN-XGBOOST Model 被引量:4
4
作者 Yuwen Chen Xiaolin Qin +1 位作者 Lige Zhang Bin Yi 《Computers, Materials & Continua》 SCIE EI 2020年第10期495-510,共16页
The occurrence of perioperative heart failure will affect the quality of medical services and threaten the safety of patients.Existing methods depend on the judgment of doctors,the results are affected by many factors... The occurrence of perioperative heart failure will affect the quality of medical services and threaten the safety of patients.Existing methods depend on the judgment of doctors,the results are affected by many factors such as doctors’knowledge and experience.The accuracy is difficult to guarantee and has a serious lag.In this paper,a mixture prediction model is proposed for perioperative adverse events of heart failure,which combined with the advantages of the Deep Pyramid Convolutional Neural Networks(DPCNN)and Extreme Gradient Boosting(XGBOOST).The DPCNN was used to automatically extract features from patient’s diagnostic texts,and the text features were integrated with the preoperative examination and intraoperative monitoring values of patients,then the XGBOOST algorithm was used to construct the prediction model of heart failure.An experimental comparison was conducted on the model based on the data of patients with heart failure in southwest hospital from 2014 to 2018.The results showed that the DPCNN-XGBOOST model improved the predictive sensitivity of the model by 3%and 31%compared with the text-based DPCNN Model and the numeric-based XGBOOST Model. 展开更多
关键词 Deep pyramid convolutional neural networks extreme gradient boosting heart failure prediction
下载PDF
FP-STE: A Novel Node Failure Prediction Method Based on Spatio-Temporal Feature Extraction in Data Centers 被引量:2
5
作者 Yang Yang Jing Dong +2 位作者 Chao Fang Ping Xie Na An 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期1015-1031,共17页
The development of cloud computing and virtualization technology has brought great challenges to the reliability of data center services.Data centers typically contain a large number of compute and storage nodes which... The development of cloud computing and virtualization technology has brought great challenges to the reliability of data center services.Data centers typically contain a large number of compute and storage nodes which may fail and affect the quality of service.Failure prediction is an important means of ensuring service availability.Predicting node failure in cloud-based data centers is challenging because the failure symptoms reflected have complex characteristics,and the distribution imbalance between the failure sample and the normal sample is widespread,resulting in inaccurate failure prediction.Targeting these challenges,this paper proposes a novel failure prediction method FP-STE(Failure Prediction based on Spatio-temporal Feature Extraction).Firstly,an improved recurrent neural network HW-GRU(Improved GRU based on HighWay network)and a convolutional neural network CNN are used to extract the temporal features and spatial features of multivariate data respectively to increase the discrimination of different types of failure symptoms which improves the accuracy of prediction.Then the intermediate results of the two models are added as features into SCSXGBoost to predict the possibility and the precise type of node failure in the future.SCS-XGBoost is an ensemble learning model that is improved by the integrated strategy of oversampling and cost-sensitive learning.Experimental results based on real data sets confirm the effectiveness and superiority of FP-STE. 展开更多
关键词 failure prediction data center features extraction XGBoost service availability
下载PDF
Failure Prediction Modeling of Lithium Ion Battery toward Distributed Parameter Estimation
6
作者 吕汉白 平鑫宇 +2 位作者 高睿泉 许亮亮 潘力佳 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第5期547-552,I0001,I0002,共8页
Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electro... Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module. 展开更多
关键词 Lithium ion battery failure prediction Battery model Distributed parameter
下载PDF
A Valorized Scheme for Failure Prediction Using ANFIS: Application to Train Track Breaking System 被引量:1
7
作者 Tse Sparthan Wolfgang Nzie +2 位作者 Bertin Sohfotsing Tibi Beda Olivier Garro 《Open Journal of Applied Sciences》 2020年第11期732-757,共26页
In the rolling stock sector, the ability to protect passengers, freight and services relies on heavy inborn maintenance. Initiating an accurate model suitable to foresee the change of attitude on components when opera... In the rolling stock sector, the ability to protect passengers, freight and services relies on heavy inborn maintenance. Initiating an accurate model suitable to foresee the change of attitude on components when operating rolling stock systems will assist in reducing lock down and favors heavy productivity. In that light, this paper showcases a suitable methodology to track degradation of components through the blinding of physic laws and artificial intelligent techniques. This model used to foresee failure deterioration rate and remaining useful life (RUL) speculation is case study to showcase its quality and perfection, within which behavioral data are obtained through simulated models initiated in Mathlab. For feature extraction and forecasting issues, different neuro-fuzzy inference systems are designed, learnt and authenticated with powerful outputs gained during this process. 展开更多
关键词 failure prediction (FP) Remaining Useful Life (RUL) Artificial Intelligence (AI) Traintrack System ANFIS Modeling
下载PDF
Bayesian serial revision method for RLLC cluster systems failure prediction
8
作者 Qiang Liu Guang Jin +2 位作者 Jinglun Zhou Quan Sun Min Xi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期238-246,共9页
Failure prediction plays an important role for many tasks such as optimal resource management in large-scale system. However, accurately failure number prediction of repairable large-scale long-running computing (RLL... Failure prediction plays an important role for many tasks such as optimal resource management in large-scale system. However, accurately failure number prediction of repairable large-scale long-running computing (RLLC) is a challenge because of the reparability and large-scale. To address the challenge, a general Bayesian serial revision prediction method based on Bootstrap approach and moving average approach is put forward, which can make an accurately prediction for the failure number. To demonstrate the performance gains of our method, extensive experiments on the data of Los Alamos National Laboratory (LANL) cluster is implemented, which is a typical RLLC system. And experimental results show that the prediction accuracy of our method is 80.2 %, and it is a greatly improvement with 4 % compared with some typical methods. Finally, the managerial implications of the models are discussed. 展开更多
关键词 failure prediction cluster systems Bayesian approach failure rate.
下载PDF
Prediction on Failure Pressure of Pipeline Containing Corrosion Defects Based on ISSA-BPNNModel
9
作者 Qi Zhuang Dong Liu Zhuo Chen 《Energy Engineering》 EI 2024年第3期821-834,共14页
Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety man... Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance. 展开更多
关键词 Oil and gas pipeline corrosion defect failure pressure prediction sparrow search algorithm BP neural network logistic chaotic map
下载PDF
A disk failure prediction model for multiple issues
10
作者 Yunchuan GUAN Yu LIU +3 位作者 Ke ZHOU Qiang LI Tuanjie WANG Hui LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第7期964-979,共16页
Disk failure prediction methods have been useful in handing a single issue,e.g.,heterogeneous disks,model aging,and minority samples.However,because these issues often exist simultaneously,prediction models that can h... Disk failure prediction methods have been useful in handing a single issue,e.g.,heterogeneous disks,model aging,and minority samples.However,because these issues often exist simultaneously,prediction models that can handle only one will result in prediction bias in reality.Existing disk failure prediction methods simply fuse various models,lacking discussion of training data preparation and learning patterns when facing multiple issues,although the solutions to different issues often conflict with each other.As a result,we first explore the training data preparation for multiple issues via a data partitioning pattern,i.e.,our proposed multi-property data partitioning(MDP).Then,we consider learning with the partitioned data for multiple issues as learning multiple tasks,and introduce the model-agnostic meta-learning(MAML)framework to achieve the learning.Based on these improvements,we propose a novel disk failure prediction model named MDP-MAML.MDP addresses the challenges of uneven partitioning and difficulty in partitioning by time,and MAML addresses the challenge of learning with multiple domains and minor samples for multiple issues.In addition,MDP-MAML can assimilate emerging issues for learning and prediction.On the datasets reported by two real-world data centers,compared to state-of-the-art methods,MDP-MAML can improve the area under the curve(AUC)and false detection rate(FDR)from 0.85 to0.89 and from 0.85 to 0.91,respectively,while reducing false alarm rate(FAR)from 4.88%to 2.85%. 展开更多
关键词 Storage system reliability Disk failure prediction Self-monitoring analysis and reporting technology(SMART) Machine learning
原文传递
A QUANTUM MULTI-AGENT BASED NEURAL NETWORK MODEL FOR FAILURE PREDICTION 被引量:5
11
作者 Wei Wu Min Liu +1 位作者 Qing Liu Weiming Shen 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2016年第2期210-228,共19页
An effective prognostic program is crucial to the predictive maintenance of complex equipment since it can improve productivity, prolong equipment life, and enhance system safety. This paper proposes a novel technique... An effective prognostic program is crucial to the predictive maintenance of complex equipment since it can improve productivity, prolong equipment life, and enhance system safety. This paper proposes a novel technique for accurate failure prognosis based on back propagation neural network and quantum multi-agent algorithm. Inspired by the extensive research of quantum computing theory and multi-agent systems, the technique employs a quantum multi-agent strategy, with the main characteristics of quantum agent representation and several operations including fitness evaluation, cooperation, crossover and mutation, for parameters optimization of neural network to avoid the deficiencies such as slow convergence and liability of getting stuck to local minima. To validate the feasibility of the proposed approach, several numerical approximation experiments were firstly designed, after which real vibrational data of bearings from the Laboratory of Cincinnati University were analyzed and used to assess the health condition for a given future point. The results were rather encouraging and indicated that the presented forecasting method has the potential to be utilized as an estimation tool for failure prediction in industrial machinery. 展开更多
关键词 failure prediction complex equipment quantum-inspired multi-agent algorithm back propagation neural network
原文传递
Autonomic failure prediction based on manifold learning for large-scale distributed systems 被引量:2
12
作者 LU Xu WANG Hui-qiang ZHOU Ren-jie GE Bao-yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2010年第4期116-124,共9页
This article investigates autonomic failure prediction in large-scale distributed systems with nonlinear dimensionality reduction to automatically extract failure features. Most existing methods for failure prediction... This article investigates autonomic failure prediction in large-scale distributed systems with nonlinear dimensionality reduction to automatically extract failure features. Most existing methods for failure prediction focus on building prediction models or heuristic rules by discovering failure patterns, but the process of feature extraction before failure patterns recognition is rarely considered due to the increasing complexity of modern distributed systems. In this work, a novel performance-centric approach to automate failure prediction is proposed based on manifold learning (ML). In addition, the ML algorithm named supervised locally linear embedding (SLLE) is applied to achieve feature extraction. To generalize the dimensionality reduction mapping, the nonlinear mapping approximation and optimization solution is also proposed. In experimental work a file transfer test bed with fault injection is developed which can gather multilevel performance metrics transparently. Based on the runtime monitoring of these metrics, the SLLE method can automatically predict more than 50% of the central processing unit (CPU) and memory failures, and around 70% of the network failure. 展开更多
关键词 failure prediction manifold learning locally linear embedding autonomic computing
原文传递
A Commutation Failure Prediction and Mitigation Method 被引量:2
13
作者 Renlong Zhu Xiaoping Zhou +2 位作者 Haitao Xia Lerong Hong Hanhang Yin 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第3期779-787,共9页
The mitigation of commutation failure(CF)depends on the accuracy of CF prediction.In terms of the large error of the existing extinction angle(EA)calculation during the fault transient period,a method for CF predictio... The mitigation of commutation failure(CF)depends on the accuracy of CF prediction.In terms of the large error of the existing extinction angle(EA)calculation during the fault transient period,a method for CF prediction and mitigation is proposed.Variations in both DC current and overlap angle(OA)are considered in the proposed method to predict the EA rapidly.In addition,variations in critical EA and the effect of firing angle(FA)on both DC current and OA are considered in the proposed method to obtain the accurate FA order for the control system.The proposed method can achieve good performance in terms of CF mitigation and reduce reactive consumption at the inverter side when a fault occurs.Simulation results based on the PSCAD/EMTDC show that the proposed method predicts CF rapidly and exhibits good performance in terms of CF mitigation. 展开更多
关键词 Commutation failure prediction commutation failure mitigation line commutated converter based high-voltage direct current(LCC-HVDC) extinction angle(EA) overlap angle(OA) firing angle(FA)
原文传递
PREDICTION OF PATH-DEPENDENT FAILURE IN ALUMINUM SHEET METALS UNDER FORMING OPERATIONS
14
作者 H.-M. Huang, J. Pan and S. C. Tang 1) Mechanical Engineering and Applied Mechanics, The University of Michigan Ann Arbor, MI 48109, USA 2) Ford Research Laboratory, Ford Motor Company Dearborn, MI 48121, USA 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期600-605,共6页
An approximate macroscopic yield criterion for anisotropic porous sheet metals is adopted in a failure prediction methodology that can be used to investigate the failure of sheet metals under forming operations. This... An approximate macroscopic yield criterion for anisotropic porous sheet metals is adopted in a failure prediction methodology that can be used to investigate the failure of sheet metals under forming operations. This failure prediction methodology is developed based on the Marciniak-Kuczynski approach by assuming a slightly higher void volume fraction inside randomly oriented imperfecte analysis. Here, a nonproportional deformation history including relative rotation of principal stretch directions is identified in a selected critical element of an aluminum sheet from a FEM fender forming simulation. Based on the failure prediction methodology, the failure of the critical sheet element is investigated under the non-proportional deformation history. The results show that thiven non-proportional deformation history. 展开更多
关键词 sheet metal forming aluminum alloy failure prediction plastic flow localization
下载PDF
Nonlinearly correlated failure analysis and autonomic prediction for distributed systems
15
作者 Lu Xu Wang Huiqiang +2 位作者 Lv Xiao Feng Guangsheng Zhou Renjie 《High Technology Letters》 EI CAS 2011年第3期290-298,共9页
In order to achieve failure prediction without manual intervention for distributed systems, a novel failure feature analysis and extraction approach to automate failure prediction is proposed. Compared with the tradit... In order to achieve failure prediction without manual intervention for distributed systems, a novel failure feature analysis and extraction approach to automate failure prediction is proposed. Compared with the traditional methods which focus on building heuristic rules or models, the autonomic prediction approach analyzes the nonlinear correlation of failure features by recognizing failure patterns. Failure data are sorted according to the nonlinear correlation and failure signature is proposed for autonomic prediction. In addition, the Manifold Learning algorithm named supervised locally linear embedding is applied to achieve feature extraction. Based on the runtime monitoring of failure metrics, the experimental results indicate that the proposed method has better performance in terms of both correlation recognition precision and feature extraction quality and thus it can be used to design efficient autonomic failure prediction for distributed systems. 展开更多
关键词 failure prediction nonlinear correlation analysis feature extraction locally linear embedding autonomic computing
下载PDF
Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk
16
作者 Polin Rahman Ahmed Rifat +3 位作者 MD.IftehadAmjad Chy Mohammad Monirujjaman Khan Mehedi Masud Sultan Aljahdali 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期757-775,共19页
Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learni... Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learning models to predict heart failure.The fundamental concept is to compare the correctness of various Machine Learning(ML)algorithms and boost algorithms to improve models’accuracy for prediction.Some supervised algorithms like K-Nearest Neighbor(KNN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF),Logistic Regression(LR)are considered to achieve the best results.Some boosting algorithms like Extreme Gradient Boosting(XGBoost)and Cat-Boost are also used to improve the prediction using Artificial Neural Networks(ANN).This research also focuses on data visualization to identify patterns,trends,and outliers in a massive data set.Python and Scikit-learns are used for ML.Tensor Flow and Keras,along with Python,are used for ANN model train-ing.The DT and RF algorithms achieved the highest accuracy of 95%among the classifiers.Meanwhile,KNN obtained a second height accuracy of 93.33%.XGBoost had a gratified accuracy of 91.67%,SVM,CATBoost,and ANN had an accuracy of 90%,and LR had 88.33%accuracy. 展开更多
关键词 Heart failure prediction data visualization machine learning k-nearest neighbors support vector machine decision tree random forest logistic regression xgboost and catboost artificial neural network
下载PDF
Empirical Analysis of Software Success Rate Forecasting During Requirement Engineering Processes 被引量:1
17
作者 Muhammad Hasnain Imran Ghani +3 位作者 Seung Ryul Jeong Muhammad Fermi Pasha Sardar Usman Anjum Abbas 《Computers, Materials & Continua》 SCIE EI 2023年第1期783-799,共17页
Forecasting on success or failure of software has become an interesting and,in fact,an essential task in the software development industry.In order to explore the latest data on successes and failures,this research fo... Forecasting on success or failure of software has become an interesting and,in fact,an essential task in the software development industry.In order to explore the latest data on successes and failures,this research focused on certain questions such as is early phase of the software development life cycle better than later phases in predicting software success and avoiding high rework?What human factors contribute to success or failure of a software?What software practices are used by the industry practitioners to achieve high quality of software in their day-to-day work?In order to conduct this empirical analysis a total of 104 practitioners were recruited to determine how human factors,misinterpretation,and miscommunication of requirements and decision-making processes play their roles in software success forecasting.We discussed a potential relationship between forecasting of software success or failure and the development processes.We noticed that experienced participants had more confidence in their practices and responded to the questionnaire in this empirical study,and they were more likely to rate software success forecasting linking to the development processes.Our analysis also shows that cognitive bias is the central human factor that negatively affects forecasting of software success rate.The results of this empirical study also validated that requirements’misinterpretation and miscommunication were themain causes behind software systems’failure.It has been seen that reliable,relevant,and trustworthy sources of information help in decision-making to predict software systems’success in the software industry.This empirical study highlights a need for other software practitioners to avoid such bias while working on software projects.Future investigation can be performed to identify the other human factors that may impact software systems’success. 展开更多
关键词 Cognitive bias misinterpretation of requirements miscommunication software success and failure prediction decision making
下载PDF
Machine learning job failure analysis and prediction model for the cloud environment
18
作者 Harikrishna Bommala Uma Maheswari V. +1 位作者 Rajanikanth Aluvalu Swapna Mudrakola 《High-Confidence Computing》 EI 2023年第4期73-86,共14页
Reliable and accessible cloud applications are essential for the future of ubiquitous computing,smart appliances,and electronic health.Owing to the vastness and diversity of the cloud,a most cloud services,both physic... Reliable and accessible cloud applications are essential for the future of ubiquitous computing,smart appliances,and electronic health.Owing to the vastness and diversity of the cloud,a most cloud services,both physical and logical services have failed.Using currently accessible traces,we assessed and characterized the behaviors of successful and unsuccessful activities.We devised and implemented a method to forecast which jobs will fail.The proposed method optimizes cloud applications more efficiently in terms of resource usage.Using Google Cluster,Mustang,and Trinity traces,which are publicly available,an in-depth evaluation of the proposed model was conducted.The traces were also fed into several different machine learning models to select the most reliable model.Our efficiency analysis proves that the model performs well in terms of accuracy,F1-score,and recall.Several factors,such as failure of forecasting work,design of scheduling algorithms,modification of priority criteria,and restriction of task resubmission,may increase cloud service dependability and availability. 展开更多
关键词 failure prediction Mustang trace Cloud computing Trinity trace Random forest Google cluster trace Fault tolerance
原文传递
Water System Condition and Asset Replacement Prioritization
19
作者 Frederick Bloetscher Zachary Farmer +3 位作者 James Barton Teresa Chapman Paula Fonseca Monica Shaner 《Journal of Water Resource and Protection》 CAS 2023年第5期165-178,共14页
The goal of asset management is to identify and track the maintenance and replacement of assets that have reached their useful life. For that reason, gathering data and collecting information is a critical step when d... The goal of asset management is to identify and track the maintenance and replacement of assets that have reached their useful life. For that reason, gathering data and collecting information is a critical step when developing an asset management plan. Such data gathering includes physical and operational properties of the assets as well as collecting and tracking important events during the lifespan of the asset (i.e., pipe breaks, replacement year, maintenance performed, etc.). Critical factors in the asset management plan may be overlooked when there is no data or poor quality data. However, many utilities lack the resources for examining buried infrastructure and lack good quality work order data, so other methods of data collection are needed. The concept for this paper was to develop a means to acquire data on the assets for a condition assessment to identify pipes that were most likely to break and those with the highest consequences for same. Three utilities were used as examples. It was found that for buried infrastructure, much more information was known than anticipated but the actual predictions relied on only a few factors related to pipe type. However, there is a need to track the consequences, in this case breaks, which would indicate a failure. The latter would be useful for predicting future maintenance needs and the most at-risk assets, but is often missing in utility systems as many utilities do not adequately track breaks sufficiently. In this case two utilities were analyzed and predication on a third was developed. 展开更多
关键词 Water Main Predicted failure Asset Management Pipe failure Water Distributions
下载PDF
A data-driven approach for predicting the fatigue life and failure mode of self-piercing rivet joints
20
作者 Jian Wang Qiu-Ren Chen +4 位作者 Li Huang Chen-Di Wei Chao Tong Xian-Hui Wang Qing Liu 《Advances in Manufacturing》 SCIE EI CAS CSCD 2024年第3期538-555,共18页
In lightweight automotive vehicles,the application of self-piercing rivet(SPR)joints is becoming increasingly widespread.Considering the importance of automotive service performance,the fatigue performance of SPR join... In lightweight automotive vehicles,the application of self-piercing rivet(SPR)joints is becoming increasingly widespread.Considering the importance of automotive service performance,the fatigue performance of SPR joints has received considerable attention.Therefore,this study proposes a data-driven approach to predict the fatigue life and failure modes of SPR joints.The dataset comprises three specimen types:cross-tensile,cross-peel,and tensile-shear.To ensure data consistency,a finite element analysis was employed to convert the external loads of the different specimens.Feature selection was implemented using various machine-learning algorithms to determine the model input.The Gaussian process regression algorithm was used to predict fatigue life,and its performance was compared with different kernel functions commonly used in the field.The results revealed that the Matern kernel exhibited an exceptional predictive capability for fatigue life.Among the data points,95.9%fell within the 3-fold error band,and the remaining 4.1%exceeded the 3-fold error band owing to inherent dispersion in the fatigue data.To predict the failure location,various tree and artificial neural network(ANN)models were compared.The findings indicated that the ANN models slightly outperformed the tree models.The ANN model accurately predicts the failure of joints with varying dimensions and materials.However,minor deviations were observed for the joints with the same sheet.Overall,this data-driven approach provided a reliable predictive model for estimating the fatigue life and failure location of SPR joints. 展开更多
关键词 Self-piercing rivet(SPR)joints Fatigue life prediction failure mode prediction Machine learning
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部