Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light...Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.展开更多
Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working co...Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working conditions and avoid false alarms.This paper proposes different support vector machine(SVM)algorithms for the prediction and detection of false alarms.K-Fold cross-validation(CV)is applied to evaluate the classification reliability of these algorithms.Supervisory Control and Data Acquisition(SCADA)data from an operating WT are applied to test the proposed approach.The results from the quadratic SVM showed an accuracy rate of 98.6%.Misclassifications from the confusion matrix,alarm log and maintenance records are analyzed to obtain quantitative information and determine if it is a false alarm.The classifier reduces the number of false alarms called misclassifications by 25%.These results demonstrate that the proposed approach presents high reliability and accuracy in false alarm identification.展开更多
Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the...Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the presence of additive white Gaussian noise (AWGN) and frequency offset, a constant false alarm rate (CFAR) detector is proposed through exploitation of cyclic autocorrelation feature implied in the preamble. The frame detection can be achieved prior to bit timing recovery. The threshold setting is independent of the signal level and noise level by utilizing CFAR method. Mathematical expressions is derived in AWGN channel by considering the probability of false alarm and probability of detection, separately. Given the probability of false alarm, the mathematical relationship between the frame detection performance and EJNo of received signals is established. Ex- perimental results are also presented in accor- dance with analysis.展开更多
A new flame detector with one ultraviolet and two infrared detectors is designed. The ultraviolet detector is of rapid response(≤10 μs) while the two infrared detectors usually have a response time of more than 5 ms...A new flame detector with one ultraviolet and two infrared detectors is designed. The ultraviolet detector is of rapid response(≤10 μs) while the two infrared detectors usually have a response time of more than 5 ms. The ultraviolet detector is applied to deal with the flame of large scales. When facing the flame of mid or small scales, the three detectors cooperate. Employing the high-order derivatives of the sample data of the infrared circuits to improve the sensitivity, the response speed is greatly improved. The data of the temperature sensor is used to adjust circuit parameters in real time, thus reducing the effect of temperature drift. The flame detectors are tested at different distances and the response time is as rapid as 0.65 ms. The test results show that the new flame detector has the characteristics of high speed and a low rate of false alarms.展开更多
A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of e...A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of exhaustion, and then the main reason was determined using exclusive method. That is, the fault was closely related to the signal transmission channel from the antenna mount to servo system in RDA cabinet. After ex- amining questionable nodes in the transmission channels of the alarm signal, we found that the false alarm fault might result from the interference of a burr in the temperature sensing circuit of the elevation motor. In actual operation, a filter capacitor was connected with the corresponding pin in the upper optical board to screen the interference of a burr, thereby successfully eliminating the false alarm fault in antenna-servo system of the CIN- RAD/SA radar of Shanwei.展开更多
Diagnosing intermittent fault is an important approach to reduce built-in test(BIT) false alarms. Aiming at solving the shortcoming of the present diagnostic method of intermittent fault, and according to the merit ...Diagnosing intermittent fault is an important approach to reduce built-in test(BIT) false alarms. Aiming at solving the shortcoming of the present diagnostic method of intermittent fault, and according to the merit of support vector machines ( SVM) which can be trained with a small-sample, an SVM-based diagnostic model of 3 states that include OK state, intermittent state and faulty state is presented. With the features based on the reflection coefficients of an alarm rate ( AR ) model extracted from small vibration samples, these models are trained to diagnose intermittent faults. The experimental results show that this method can diagnose multiple intermittent faults accurately with small training samples and BIT false alarms are reduced.展开更多
Carbon monoxide can cause serious illness or even death if the functionality of smoke alarms fails in the residential home and, in fact, more than 350 persons die every year due to the leak of carbon monoxide. However...Carbon monoxide can cause serious illness or even death if the functionality of smoke alarms fails in the residential home and, in fact, more than 350 persons die every year due to the leak of carbon monoxide. However, vulnerabilities and threats to smoke/CO alarms have not been well-studied. In this paper, through interconnect, a power replay attack has been studied in order to trigger a false alarm. The experimental results demonstrate the smoke alarm can be manipulated. This paper also concentrates on providing a sequence of security methods to defend the smoke alarm system. In future, how to protect smart detectors against attacks will be studied as this can force them to leave high-quality mode of operations.展开更多
选注者言:这是来自印度的一则消息。当SARS肆虐全球时,印度其实幸免此“难”(SARS-free),这是WHO下的结论,但是,也许由于过度之惊慌,造成了误 判,以为染SARS疾病者就在身边。当印度卫生部长被问及是否明白WHO为 SARS下的定义时,该部长...选注者言:这是来自印度的一则消息。当SARS肆虐全球时,印度其实幸免此“难”(SARS-free),这是WHO下的结论,但是,也许由于过度之惊慌,造成了误 判,以为染SARS疾病者就在身边。当印度卫生部长被问及是否明白WHO为 SARS下的定义时,该部长的回答令人发笑:the government wanted to be“展开更多
Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two line...Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.展开更多
Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellat...Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellation(SLC)and Sidelobe Blanking are two unique solutions to solve this problem(SLB).Aside from this approach,the probability of false alert and likelihood of detection are the most essential parameters in radar.The chance of a false alarm for any radar system should be minimal,and as a result,the probability of detection should be high.There are several interference cancellation strategies in the literature that are used to sustain consistent false alarms regardless of the clutter environment.With the necessity for interference cancellation methods and the constant false alarm rate(CFAR),the Maisel SLC algorithm has been modified to create a new algorithm for recognizing targets in the presence of severe interference.The received radar returns and interference are simulated as non-stationary in this approach,and side-lobe interference is cancelled using an adaptive algorithm.By comparing the performance of adaptive algorithms,simulation results are shown.In a severe clutter situation,the simulation results demonstrate a considerable increase in target recognition and signal to noise ratio when compared to the previous technique.展开更多
Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,f...Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset.展开更多
In order to improve the rejection capability of mismatched interferer signals,a new two-stage detector is proposed under homogeneous scenarios with unknown covariance matrix,which is obtained by cascading the adaptive...In order to improve the rejection capability of mismatched interferer signals,a new two-stage detector is proposed under homogeneous scenarios with unknown covariance matrix,which is obtained by cascading the adaptive matched filter(AMF)detector and the enhanced RAO(EnRAO)detector.The new detector has constant false alarm performance,and the closed-form expression of probability of false alarm and probability of detection is derived.The performance of the new detector is assessed,and analyzed in comparison with other detectors.The results show that,the proposed detector can provide enhanced rejection capability in the case of mismatch,but the performance of the detector is slightly lost under the condition of matching.展开更多
A novel spectrum hole detection mechanism is proposed to improve the detection probability in cognitive radio networks for several typical scenarios. By removing the influence of the spatial false alarm (SFA), the s...A novel spectrum hole detection mechanism is proposed to improve the detection probability in cognitive radio networks for several typical scenarios. By removing the influence of the spatial false alarm (SFA), the spectrum hole detection probability of the secondary user under path loss and multi-path fading is derived. Meanwhile, the spectrum hole detection probability of multi-users cooperative sensing and that of single-user sensing in multi-bands are derived for comparison. Theoretical analyses and simulation results show that the spectrum hole detection probability of the proposed mechanism is inversely proportional to the sampling times and the area of the sensing region. The detection performance of the multi-users sensing is better than that of single-user sensing when with the AND ~ogic fusion rule but worse when with the OR logic fusion rule. The detection probability is further decreased in the Rayleigh fading channel but it is greatly increased in multi-bands.展开更多
Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrow...Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrower frequency interval than the traditional OFDM waveform is proposed.Therefore,in the same frequency bandwidth,the DMC waveform contains more sub-carriers and provides more frequency diversity.Additionally,to further improve detection performance,a novel optimal weight accumulation target detection (OWATD)method is proposed,where the echo electromagnetic waves at different frequencies are accumulated with the optimal weight coefficients.Then,with the signal-to-noise ratio (SNR)of echo waveform approaching infinity,the asymptotic detection performance is analyzed, and the condition that the OWATD method with the DMC outperforms the matched filter with the OFDM is presented.Simulation results show that the DMC outperforms the OFDM in the target detection performance,and the OWATD method can further improve the detection performance of the traditional methods with both the OFDM and DMC radar waveform.展开更多
For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosi...For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosine transform (DCT) to the outputs of the partial matched filter (PMF) for every antenna, the high order com- ponents in the transforming domain will be filtered, then the equalgain (EG) combination for the inverse discrete cosine transform (IDCT) reconstructed signal would be done subsequently. Thus, due to the different frequency distribution characteristics between the noise and signals, after EG combination, the energy of signals has almost no loss and the noise energy is greatly reduced. The theoretical analysis and simulation results show that the detection algorithm can effectively improve the signal-to-noise ratio of the captured signal and increase the probability of detection under the same false alarm probability. In addition, it should be pointed out that this method can also be applied to Rayleigh fading channels with moving antenna.展开更多
In order to eliminate false alarms,issued by gas sensors in coal mining,caused by Electromagnetic Interference(EMI),both computer simulation and field measurements were introduced to analyze the underground EMI distri...In order to eliminate false alarms,issued by gas sensors in coal mining,caused by Electromagnetic Interference(EMI),both computer simulation and field measurements were introduced to analyze the underground EMI distribution.A simplified model of a sensor with metal enclosure was established and the effects of shielding properties about the enclosure aperture were studied.Because the haulage motor is the moving EMI source,varying with time,the onsite flameproof measuring instruments cannot accomplish synchronous measurements of electromagnetic field vectors.To simplify the field measurements,two sensors,one with a lead and the other without a lead,were chosen to conduct the contrasting measurements.The EMI current caused by the perforation lead was comparatively strong and therefore nickel zinc ferrite beads were used to cut off the EMI propagation paths.The peak value of the interference current was reduced by 20%-70% with the beads.After switching on the sensor power,the sen-sors still occasionally gave false alarms when the switch of nearby large-scale electric equipment was operated.A complex EMI filter was used and the EMI attenuated markedly.The running results demonstrated that false alarms had been eliminated.We con-clude that the improved shielding and filtering are highly significant in enhancing the immunity of the gas sensor.展开更多
A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homo...A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homogeneity in CFAR reference windows is indicated by a VI-CFAR detector, a switching- CFAR detector is introduced to optimize the performance of the VI-CFAR detector in homogeneous, multiple targets and clutter edge backgrounds. The structure and parameters selection method of the SVI-CFAR detector is presented. Comparisons with classic CFAR detectors and recently proposed detectors are also given. Theoretical analysis and simulation results show that SVICFAR detector maintains the good performance of the VI-CFAR detector in homogeneous and clutter edge backgrounds, while greatly improving the capacity of anti-multi targets.展开更多
A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and d...A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).展开更多
Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on s...Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.展开更多
A new constant false alarm rate (CFAR) target detector for synthetic aperture radar (SAR) images is developed. For each pixel under test, both the local probability density function (PDF) of the pixel and the cl...A new constant false alarm rate (CFAR) target detector for synthetic aperture radar (SAR) images is developed. For each pixel under test, both the local probability density function (PDF) of the pixel and the clutter PDF in the reference window are estimated by the non-parametric density estimation. The target detector is defined as the mean square error (MSE) distance between the two PDFs. The CFAR detection in SAR images having multiplicative noise is achieved by adaptive kernel bandwidth proportional to the clutter level. In addition, for obtaining a threshold with respect to a given probability of false alarm (PFA), an unsupervised null distribution fitting method with outlier rejection is proposed. The effectiveness of the proposed target detector is demonstrated by the experiment result using the RADATSAT-2 SAR image.展开更多
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(LH2022F049).
文摘Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.
基金supported financially by the Ministerio de Ciencia e Innovación(Spain)and the European Regional Development Fund under the Research Grant WindSound Project(Ref.:PID2021-125278OB-I00).
文摘Maintenance operations have a critical influence on power gen-eration by wind turbines(WT).Advanced algorithms must analyze large volume of data from condition monitoring systems(CMS)to determine the actual working conditions and avoid false alarms.This paper proposes different support vector machine(SVM)algorithms for the prediction and detection of false alarms.K-Fold cross-validation(CV)is applied to evaluate the classification reliability of these algorithms.Supervisory Control and Data Acquisition(SCADA)data from an operating WT are applied to test the proposed approach.The results from the quadratic SVM showed an accuracy rate of 98.6%.Misclassifications from the confusion matrix,alarm log and maintenance records are analyzed to obtain quantitative information and determine if it is a false alarm.The classifier reduces the number of false alarms called misclassifications by 25%.These results demonstrate that the proposed approach presents high reliability and accuracy in false alarm identification.
基金supported by National Science Foundation of China under Grant No.61401205
文摘Frame detection is important in burst communication systems for its contribu- tions in frame synchronization. It locates the information bits in the received data stream at receivers. To realize frame detection in the presence of additive white Gaussian noise (AWGN) and frequency offset, a constant false alarm rate (CFAR) detector is proposed through exploitation of cyclic autocorrelation feature implied in the preamble. The frame detection can be achieved prior to bit timing recovery. The threshold setting is independent of the signal level and noise level by utilizing CFAR method. Mathematical expressions is derived in AWGN channel by considering the probability of false alarm and probability of detection, separately. Given the probability of false alarm, the mathematical relationship between the frame detection performance and EJNo of received signals is established. Ex- perimental results are also presented in accor- dance with analysis.
基金Project of Special Zone for National Defense Science and Technology Innovation(No.Y7GW04C001)
文摘A new flame detector with one ultraviolet and two infrared detectors is designed. The ultraviolet detector is of rapid response(≤10 μs) while the two infrared detectors usually have a response time of more than 5 ms. The ultraviolet detector is applied to deal with the flame of large scales. When facing the flame of mid or small scales, the three detectors cooperate. Employing the high-order derivatives of the sample data of the infrared circuits to improve the sensitivity, the response speed is greatly improved. The data of the temperature sensor is used to adjust circuit parameters in real time, thus reducing the effect of temperature drift. The flame detectors are tested at different distances and the response time is as rapid as 0.65 ms. The test results show that the new flame detector has the characteristics of high speed and a low rate of false alarms.
文摘A false alarm fault frequently appeared in antenna-servo system of the CINRAD/SA weather radar of Shanwei in the second half of 2011, so possible reasons for the false alarm fault were listed firstly using method of exhaustion, and then the main reason was determined using exclusive method. That is, the fault was closely related to the signal transmission channel from the antenna mount to servo system in RDA cabinet. After ex- amining questionable nodes in the transmission channels of the alarm signal, we found that the false alarm fault might result from the interference of a burr in the temperature sensing circuit of the elevation motor. In actual operation, a filter capacitor was connected with the corresponding pin in the upper optical board to screen the interference of a burr, thereby successfully eliminating the false alarm fault in antenna-servo system of the CIN- RAD/SA radar of Shanwei.
文摘Diagnosing intermittent fault is an important approach to reduce built-in test(BIT) false alarms. Aiming at solving the shortcoming of the present diagnostic method of intermittent fault, and according to the merit of support vector machines ( SVM) which can be trained with a small-sample, an SVM-based diagnostic model of 3 states that include OK state, intermittent state and faulty state is presented. With the features based on the reflection coefficients of an alarm rate ( AR ) model extracted from small vibration samples, these models are trained to diagnose intermittent faults. The experimental results show that this method can diagnose multiple intermittent faults accurately with small training samples and BIT false alarms are reduced.
文摘Carbon monoxide can cause serious illness or even death if the functionality of smoke alarms fails in the residential home and, in fact, more than 350 persons die every year due to the leak of carbon monoxide. However, vulnerabilities and threats to smoke/CO alarms have not been well-studied. In this paper, through interconnect, a power replay attack has been studied in order to trigger a false alarm. The experimental results demonstrate the smoke alarm can be manipulated. This paper also concentrates on providing a sequence of security methods to defend the smoke alarm system. In future, how to protect smart detectors against attacks will be studied as this can force them to leave high-quality mode of operations.
文摘选注者言:这是来自印度的一则消息。当SARS肆虐全球时,印度其实幸免此“难”(SARS-free),这是WHO下的结论,但是,也许由于过度之惊慌,造成了误 判,以为染SARS疾病者就在身边。当印度卫生部长被问及是否明白WHO为 SARS下的定义时,该部长的回答令人发笑:the government wanted to be“
基金supported by the National Natural Science Foundation of China(61971432)Taishan Scholar Project of Shandong Province(tsqn201909156)the Outstanding Youth Innovation Team Program of University in Shandong Province(2019KJN031)。
文摘Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.
文摘Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellation(SLC)and Sidelobe Blanking are two unique solutions to solve this problem(SLB).Aside from this approach,the probability of false alert and likelihood of detection are the most essential parameters in radar.The chance of a false alarm for any radar system should be minimal,and as a result,the probability of detection should be high.There are several interference cancellation strategies in the literature that are used to sustain consistent false alarms regardless of the clutter environment.With the necessity for interference cancellation methods and the constant false alarm rate(CFAR),the Maisel SLC algorithm has been modified to create a new algorithm for recognizing targets in the presence of severe interference.The received radar returns and interference are simulated as non-stationary in this approach,and side-lobe interference is cancelled using an adaptive algorithm.By comparing the performance of adaptive algorithms,simulation results are shown.In a severe clutter situation,the simulation results demonstrate a considerable increase in target recognition and signal to noise ratio when compared to the previous technique.
文摘Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset.
基金supported by the National Natural Science Foundation of China(No.61971412).
文摘In order to improve the rejection capability of mismatched interferer signals,a new two-stage detector is proposed under homogeneous scenarios with unknown covariance matrix,which is obtained by cascading the adaptive matched filter(AMF)detector and the enhanced RAO(EnRAO)detector.The new detector has constant false alarm performance,and the closed-form expression of probability of false alarm and probability of detection is derived.The performance of the new detector is assessed,and analyzed in comparison with other detectors.The results show that,the proposed detector can provide enhanced rejection capability in the case of mismatch,but the performance of the detector is slightly lost under the condition of matching.
基金The National Science and Technology Major Project( No. 2011ZX03005-004-03)the National Natural Science Foundation of China ( No. 61171081, 60872004 )the Natural Science Foundation of Guangxi Province ( No. 2011GXNSFB018075)
文摘A novel spectrum hole detection mechanism is proposed to improve the detection probability in cognitive radio networks for several typical scenarios. By removing the influence of the spatial false alarm (SFA), the spectrum hole detection probability of the secondary user under path loss and multi-path fading is derived. Meanwhile, the spectrum hole detection probability of multi-users cooperative sensing and that of single-user sensing in multi-bands are derived for comparison. Theoretical analyses and simulation results show that the spectrum hole detection probability of the proposed mechanism is inversely proportional to the sampling times and the area of the sensing region. The detection performance of the multi-users sensing is better than that of single-user sensing when with the AND ~ogic fusion rule but worse when with the OR logic fusion rule. The detection probability is further decreased in the Rayleigh fading channel but it is greatly increased in multi-bands.
基金The National Natural Science Foundation of China(No.61271204)the National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrower frequency interval than the traditional OFDM waveform is proposed.Therefore,in the same frequency bandwidth,the DMC waveform contains more sub-carriers and provides more frequency diversity.Additionally,to further improve detection performance,a novel optimal weight accumulation target detection (OWATD)method is proposed,where the echo electromagnetic waves at different frequencies are accumulated with the optimal weight coefficients.Then,with the signal-to-noise ratio (SNR)of echo waveform approaching infinity,the asymptotic detection performance is analyzed, and the condition that the OWATD method with the DMC outperforms the matched filter with the OFDM is presented.Simulation results show that the DMC outperforms the OFDM in the target detection performance,and the OWATD method can further improve the detection performance of the traditional methods with both the OFDM and DMC radar waveform.
基金supported by the National Natural Science Foundation of China(61172138)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JQ8040)+1 种基金the Fundamental Research Funds for the Central Universities(K5051302015K5051302040)
文摘For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosine transform (DCT) to the outputs of the partial matched filter (PMF) for every antenna, the high order com- ponents in the transforming domain will be filtered, then the equalgain (EG) combination for the inverse discrete cosine transform (IDCT) reconstructed signal would be done subsequently. Thus, due to the different frequency distribution characteristics between the noise and signals, after EG combination, the energy of signals has almost no loss and the noise energy is greatly reduced. The theoretical analysis and simulation results show that the detection algorithm can effectively improve the signal-to-noise ratio of the captured signal and increase the probability of detection under the same false alarm probability. In addition, it should be pointed out that this method can also be applied to Rayleigh fading channels with moving antenna.
基金Project 50674093 supported by the National Natural Science Foundation of China
文摘In order to eliminate false alarms,issued by gas sensors in coal mining,caused by Electromagnetic Interference(EMI),both computer simulation and field measurements were introduced to analyze the underground EMI distribution.A simplified model of a sensor with metal enclosure was established and the effects of shielding properties about the enclosure aperture were studied.Because the haulage motor is the moving EMI source,varying with time,the onsite flameproof measuring instruments cannot accomplish synchronous measurements of electromagnetic field vectors.To simplify the field measurements,two sensors,one with a lead and the other without a lead,were chosen to conduct the contrasting measurements.The EMI current caused by the perforation lead was comparatively strong and therefore nickel zinc ferrite beads were used to cut off the EMI propagation paths.The peak value of the interference current was reduced by 20%-70% with the beads.After switching on the sensor power,the sen-sors still occasionally gave false alarms when the switch of nearby large-scale electric equipment was operated.A complex EMI filter was used and the EMI attenuated markedly.The running results demonstrated that false alarms had been eliminated.We con-clude that the improved shielding and filtering are highly significant in enhancing the immunity of the gas sensor.
基金supported by the National Natural Science Foundation of China(61102158)the China Postdoctoral Science Foundation(2011M500667)
文摘A switching variability index (SVl) constant false alarm rate (CFAR) detector is proposed for improving the detection performance of VI-CFAR detectors in multiple targets backgrounds. When the presence of non-homogeneity in CFAR reference windows is indicated by a VI-CFAR detector, a switching- CFAR detector is introduced to optimize the performance of the VI-CFAR detector in homogeneous, multiple targets and clutter edge backgrounds. The structure and parameters selection method of the SVI-CFAR detector is presented. Comparisons with classic CFAR detectors and recently proposed detectors are also given. Theoretical analysis and simulation results show that SVICFAR detector maintains the good performance of the VI-CFAR detector in homogeneous and clutter edge backgrounds, while greatly improving the capacity of anti-multi targets.
基金supported by the National Natural Science Foundation of China(609250056110216961501505)
文摘A novel adaptive detector for airborne radar space-time adaptive detection (STAD) in partially homogeneous environments is proposed. The novel detector combines the numerically stable Krylov subspace technique and diagonal loading technique, and it uses the framework of the adaptive coherence estimator (ACE). It can effectively detect a target with low sample support. Compared with its natural competitors, the novel detector has higher proba- bility of detection (PD), especially when the number of the training data is low. Moreover, it is shown to be practically constant false alarm rate (CFAR).
基金National Natural Foundation of China (No.60421002, No.70471052)
文摘Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.
基金supported by the National Natural Science Foundation of China (40871157 41171317)the Foundation of Advance Research of Science and Technology for Chinese National Defence(9140C620201902)
文摘A new constant false alarm rate (CFAR) target detector for synthetic aperture radar (SAR) images is developed. For each pixel under test, both the local probability density function (PDF) of the pixel and the clutter PDF in the reference window are estimated by the non-parametric density estimation. The target detector is defined as the mean square error (MSE) distance between the two PDFs. The CFAR detection in SAR images having multiplicative noise is achieved by adaptive kernel bandwidth proportional to the clutter level. In addition, for obtaining a threshold with respect to a given probability of false alarm (PFA), an unsupervised null distribution fitting method with outlier rejection is proposed. The effectiveness of the proposed target detector is demonstrated by the experiment result using the RADATSAT-2 SAR image.