The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil produ...The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.展开更多
Based on a large amount of seismic, drilling and core data, the characteristics of the early- middle Miocene submarine fans in the Baiyun Sag, northern South China Sea are investigated. By analyzing the sedimentary pr...Based on a large amount of seismic, drilling and core data, the characteristics of the early- middle Miocene submarine fans in the Baiyun Sag, northern South China Sea are investigated. By analyzing the sedimentary processes of submarine fans in SQ21 (SQ21 refers to the 3rd-order sequence with its bottom boundary 21 Ma), a sedimentary model of the sand-rich fans is established and the main factors controlling fan deposition are detailed. The results indicate that from early to middle Miocene the Pearl River Mouth Basin developed seven 3rd-order sequences in all, with each lowstand systems tract (LST) of the sequence corresponding to submarine fans. However, only the fans in SQ13.8 and SQ21 are sand-rich fans, the others being mud-rich fans. The cores reveal that the submarine fans in the Pearl River Mouth Basin developed five lithofacies: (1) mud clast-bearing sandstone, interpreted as channel deposits; (2) typical turbidite sandstones, also interpreted as channel deposits; (3) thin-bedded sandstone and mudstone, interpreted as channel-levee complex deposits; (4) massive sandstones, interpreted as lobe deposits; (5) massive mudstone, interpreted as hemipelagic mud. The sand-rich submarine fans in the Pearl River Mouth Basin mainly developed in LST, and in LST reverse faults were active, which led to the formation of accommodation on the shelf. Different from the theory of classic sequence stratigraphy, the accommodation on the shelf captures terrigenous debris transported by the Pearl River, and the uplift at the edge of shelf serves as a "Linear Source" for the deep water area instead of the Pearl River. Therefore, the fans mainly derived from the eroded debris from the uplift. Factors controlling fan deposition include the basin's tectonic framework, the evolution of the slope break, relative sea-level changes as well as the evolution of the fault system, and the fans are formed under the combination of the above factors.展开更多
Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwate...Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.展开更多
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w...Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.展开更多
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s...It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.展开更多
The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 t...Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 to 44 km from the source volcano. The blockage impounded a body of water which then released producing four stratigraphic units in the downstream debris fan. The four stratigraphic units are a boulder core comprised of locally sourced bedrock boulders and three sand-rich units including a fine-grained sand unit, a sandy pumice gravel (±basalt/hydrovolcanic tuff) unit, and a pumice pebble-bearing, crystal-rich sand unit. Hand-drilled auger holes up to ~1.6 m deep were used to obtain samples of the sand-rich units. Units were delimited using surface and down-hole observations, composition and texture, estimated density, statistical parameters of grain size, and vertical and lateral distribution of properties. Overtopping followed by rapid incision into the ash-rich pyroclastic flows progressively cleared the canyon, but a bedrock knickpoint near the head of the canyon limited the volume of debris available for transport to about 0.04 km<sup>3</sup> to 0.08 km<sup>3</sup>. Co-deposition of bedrock boulders and lithic-rich sand was followed by rapid deposition with minimal reworking of remobilized pyroclastics. Continued draining of the impounded lake sent hyperconcentrated flows onto the debris fan depositing pumice-rich gravels that graded upward to crystal-rich sands.展开更多
树是连通的无圈图,研究树的拉普拉斯矩阵具有重要的图论和实际意义.设G是一个有n个点和m个边的图,A(G)和D(G)分别是图G的邻接矩阵和对角度矩阵,那么G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).LI矩阵定义为LI(G)=L(G)-(2m/n)I_(n),其中I_(n)...树是连通的无圈图,研究树的拉普拉斯矩阵具有重要的图论和实际意义.设G是一个有n个点和m个边的图,A(G)和D(G)分别是图G的邻接矩阵和对角度矩阵,那么G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).LI矩阵定义为LI(G)=L(G)-(2m/n)I_(n),其中I_(n)是单位矩阵.图的LI矩阵的Ky Fan k-范数代表了拉普拉斯特征值和拉普拉斯特征值平均值之间距离的有序和.研究了双星图的LI矩阵的Ky Fan k-范数,证明了双星图的LI矩阵的Ky Fan k-范数满足文献[6]中提出的猜想.展开更多
As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study ai...As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.展开更多
Tectonic activity occurred during the depositional period of the Enping Formation in the southern Baiyun Sag in the Pearl River Mouth Basin,with a series of synsedimentary faults and a set of large fan delta reservoir...Tectonic activity occurred during the depositional period of the Enping Formation in the southern Baiyun Sag in the Pearl River Mouth Basin,with a series of synsedimentary faults and a set of large fan delta reservoir bodies developing.There is no data from drilling,cores,etc.for this area,so this paper applies three-dimensional seismic data to study the structural style of the steep slope zone,the seismic facies characteristics of fan deltas,and the source-sink system and sedimentary model of the Enping Formation.The control action of tectonic activity on fan deltaic sedimentary systems is studied by combining interpretation of fault systems,dissection of structural styles,seismic reflection structure,seismic facies geometry,and seismic attribute analysis,together with theoretical analysis of the source-sink deposition process.The Baiyun Sag has experienced tectonic activity since the Eocene,and a series of synsedimentary faults are developed in the southern steep slope zone.Under the common control of multiple large synsedimentary faults,a large ancient gully formed in the steep slope zone in the south,which gradually widened from south to north.The uplift area in the southern part of the sag was exposed for a long time during the deposition of the Enping Formation and consequently suffered weathering and erosion.The resulting sediments were transported through a system of provenance channels composed of slopes and an ancient gully to the depression area,where they were deposited and eventually converged to form a large fan delta.The fan delta presents the overall characteristics of NS strong wedge reflection and EW strong domal reflection—thick in the middle part and thin in the wings.It displays a lobe-shaped distribution on the plane,with the fan root pointing to the south slope.According to differences in reflection intensity from bottom to top,it can be subdivided into three stages of progradational sedimentary bodies—the southern uplift and denudation zone,the large ancient gully,and the fan delta—which together constitute a complete source-sink system.This represents a sedimentary model of progradational fan delta under the overall joint control of the re stricted ancient gully and syndepositional faults.展开更多
The impeller of turbo machinery is a typical nonlinear multi-oscillator system.The vibration of each module is coupling, including fluid-solid coupling of the blade.The subject of our investigation was a KDF-5 mine fa...The impeller of turbo machinery is a typical nonlinear multi-oscillator system.The vibration of each module is coupling, including fluid-solid coupling of the blade.The subject of our investigation was a KDF-5 mine fan for which we analyzed air vibration signals and axial vibration signals by using correlation dimension analysis under five variable working conditions.The results indicate that their correlation dimension curves show a uniform trend.That is to say, the characteristics of the variation signals of the integral structure are correlated and mutually embodied.It proves that it is possible to monitor the working state of a mine fan by coupling the vibration signals and air vibration signals for these are more sensitive in representing the status of the impeller system.展开更多
There are many large-scale Cenozoic sedimentary basins with plentiful river deltas,deep-water fans and carbonate platforms in the southern South China Sea.The Crocker Fan was deposited as a typical submarine fan durin...There are many large-scale Cenozoic sedimentary basins with plentiful river deltas,deep-water fans and carbonate platforms in the southern South China Sea.The Crocker Fan was deposited as a typical submarine fan during the late Eocene–early Miocene,and stretches extensively across the entire Sarawak–Sabah of the northern Borneo area.However,systematic analyses are still lacking regarding its sediment composition and potential source suppliers.No consensus has been reached yet on the provenance evolution and sedimentary infilling processes,which seriously impeded the oil-and-gas exploration undertakings.By combining with sedimentaryfacies identification,heavy mineral assemblages,elemental geochemistry and detrital zircon U-Pb dating,this paper aims to generalize an integrated analysis on the potential provenance terranes and restore source-to-sink pathways of the Crocker Fan.In general,the Crocker Fan was initially formed over the Cretaceous–lower/middle Eocene Rajang Group by an angular Rajang unconformity.The continual southward subduction of the protoSouth China Sea resulted in magmatic activities and subsequent regional deformation and thrusting along the Lupar Line in the northern Borneo.The lowermost Crocker sequence is featured by a thick conglomerate layer sourced from in-situ or adjacent paleo-uplifts.From the late Eocene to the early Miocene,the Crocker Fan was constantly delivered with voluminous detritus from the Malay Peninsula of the western Sundaland.The Zengmu Basin was widely deposited with delta plain and neritic facies sediments,while the Brunei-Sabah Basin,to the farther east,was ubiquitously characterized by turbiditic sequences.The Crocker Fan successions are overall thick layers of modest-grained sandstones,which formed high-quality reservoirs in the southern South China Sea region.展开更多
Zhao Rukuo's Zhu Fan Zhi in the Southern Song dynasty was the first book in the history of China to systematically describe the “Maritime Silk Road”, recording the geography, products, customs, trade, etc. of mo...Zhao Rukuo's Zhu Fan Zhi in the Southern Song dynasty was the first book in the history of China to systematically describe the “Maritime Silk Road”, recording the geography, products, customs, trade, etc. of more than 50 foreign countries and regions. The book included a large amount of medical literature, introducing medical customs and the production of drugs in various places, as well as the efficacy of some medicine. These materials are of unique value for understanding the medicine trade in the Song dynasty, and even the medical culture along the “Maritime Road of Aromatic Medicine”.展开更多
[Objectives]The purpose was to solve the problem that high temperature and high humidity will seriously affect the health and weight gain of pigs.[Methods]The fan-water curtain cooling system was popularized in large-...[Objectives]The purpose was to solve the problem that high temperature and high humidity will seriously affect the health and weight gain of pigs.[Methods]The fan-water curtain cooling system was popularized in large-scale pig farms.[Results]The pigs using the water curtain cooling system gained 1.5 kg from weaning to the day of slaughter.The feed-to-gain ratio was 2.43∶1,a year-on-year decrease of 0.05.The average weight gain per pig was about 5-10 kg.[Conclusions]The application of fan-water curtain cooling system in pig production can accelerate the growth rate of pigs,reduce the occurrence of diseases and improve the utilization of feed,eventually improving the productivity of pigs.展开更多
In this paper the application of a cleaning system which was made up of a centrifugal fan with double channel and one sieve to 4LZ-3.5 combine was introduced. This cleaning system with double channel compared with the...In this paper the application of a cleaning system which was made up of a centrifugal fan with double channel and one sieve to 4LZ-3.5 combine was introduced. This cleaning system with double channel compared with the traditional air-sieve cleaning system of combines may omit one two sieves and simplify the transmission mechanism. It is also compared with the present cleaning system with double channel applied to some combines, such as the Commandor 112CS/ 228CS combines of Claas Corporation in Germany and the MAXIMIZERTMombincs of John Deerc company in U.S.A. It may omit one sieve and the preclcaner and simlify the transmission mechanism. The measuring results indicated that the cleaning ratio of wheat grain is 99.1% and the cleaning loss ratio of wheat is 0.17% when the feed rate is 4.01 kg/ s.展开更多
To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature...To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature is 26oC. Results show that the temperature of the substrate of LEDs reaches 62oC without the fan, however, it reaches only 32oC when the best cooling condition appears. The temperature of the LEDs decreases by 30oC since the heat produced by LEDs is transferred rapidly by the fan. The experiment demonstrates that the cooling system with the fan has good performance.展开更多
基金This study was supported by the project“the deep-water fan systems and petroleum resources in the South China Sea”(grant 40238060)sponsored by the Natural Science Foundation of China and the China National Offshore Oil Corporation.
文摘The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.
基金sponsored by the National Key Projects of Basic Research (Grant No. 2009CB219407)the Natural Science Foundation (Grant No. 40572067)
文摘Based on a large amount of seismic, drilling and core data, the characteristics of the early- middle Miocene submarine fans in the Baiyun Sag, northern South China Sea are investigated. By analyzing the sedimentary processes of submarine fans in SQ21 (SQ21 refers to the 3rd-order sequence with its bottom boundary 21 Ma), a sedimentary model of the sand-rich fans is established and the main factors controlling fan deposition are detailed. The results indicate that from early to middle Miocene the Pearl River Mouth Basin developed seven 3rd-order sequences in all, with each lowstand systems tract (LST) of the sequence corresponding to submarine fans. However, only the fans in SQ13.8 and SQ21 are sand-rich fans, the others being mud-rich fans. The cores reveal that the submarine fans in the Pearl River Mouth Basin developed five lithofacies: (1) mud clast-bearing sandstone, interpreted as channel deposits; (2) typical turbidite sandstones, also interpreted as channel deposits; (3) thin-bedded sandstone and mudstone, interpreted as channel-levee complex deposits; (4) massive sandstones, interpreted as lobe deposits; (5) massive mudstone, interpreted as hemipelagic mud. The sand-rich submarine fans in the Pearl River Mouth Basin mainly developed in LST, and in LST reverse faults were active, which led to the formation of accommodation on the shelf. Different from the theory of classic sequence stratigraphy, the accommodation on the shelf captures terrigenous debris transported by the Pearl River, and the uplift at the edge of shelf serves as a "Linear Source" for the deep water area instead of the Pearl River. Therefore, the fans mainly derived from the eroded debris from the uplift. Factors controlling fan deposition include the basin's tectonic framework, the evolution of the slope break, relative sea-level changes as well as the evolution of the fault system, and the fans are formed under the combination of the above factors.
基金The National Natural Science Foundation of China under contract No.42372154。
文摘Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.
基金The study is funded by the Cooperation Project of China National Petroleum Company(CNPC)and China University of Petroleum-Beijing(CUPB)(No.RIPED-2021-JS-552)the National Natural Science Foundation of China(Nos.42002112,42272110)+2 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the Science Foundation for Youth Scholars of CUPB(No.24620222BJRC006)We thank the China Scholarship Council(CSC)(No.202106440048)for having funded the research stay of Mei Chen at MARUM,University of Bremen.We thank Elda Miramontes for her constructive comments and suggestions that helped us improve our manuscript.
文摘Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.
基金the Key Project of the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC02020)the Major Strategic Research Project of the Chinese Academy of Engineering and Local Cooperation(2021NXZD8)the Key Research and Development Plan Project of Ningxia Hui Autonomous Region,China(2022004129003).We are grateful to the editors and anonymous reviewers for their insightful comments and suggestions in improving this manuscript.
文摘It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems.
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.
文摘Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 to 44 km from the source volcano. The blockage impounded a body of water which then released producing four stratigraphic units in the downstream debris fan. The four stratigraphic units are a boulder core comprised of locally sourced bedrock boulders and three sand-rich units including a fine-grained sand unit, a sandy pumice gravel (±basalt/hydrovolcanic tuff) unit, and a pumice pebble-bearing, crystal-rich sand unit. Hand-drilled auger holes up to ~1.6 m deep were used to obtain samples of the sand-rich units. Units were delimited using surface and down-hole observations, composition and texture, estimated density, statistical parameters of grain size, and vertical and lateral distribution of properties. Overtopping followed by rapid incision into the ash-rich pyroclastic flows progressively cleared the canyon, but a bedrock knickpoint near the head of the canyon limited the volume of debris available for transport to about 0.04 km<sup>3</sup> to 0.08 km<sup>3</sup>. Co-deposition of bedrock boulders and lithic-rich sand was followed by rapid deposition with minimal reworking of remobilized pyroclastics. Continued draining of the impounded lake sent hyperconcentrated flows onto the debris fan depositing pumice-rich gravels that graded upward to crystal-rich sands.
文摘树是连通的无圈图,研究树的拉普拉斯矩阵具有重要的图论和实际意义.设G是一个有n个点和m个边的图,A(G)和D(G)分别是图G的邻接矩阵和对角度矩阵,那么G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).LI矩阵定义为LI(G)=L(G)-(2m/n)I_(n),其中I_(n)是单位矩阵.图的LI矩阵的Ky Fan k-范数代表了拉普拉斯特征值和拉普拉斯特征值平均值之间距离的有序和.研究了双星图的LI矩阵的Ky Fan k-范数,证明了双星图的LI矩阵的Ky Fan k-范数满足文献[6]中提出的猜想.
文摘As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.
基金supported by the National Science and Technology Major Project(Grant no.2016ZX05026–007–007)the National Natural Science Foundation of China(Grant no.41502127)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(Grant nos.2017JM40132020JQ798)the Scientific Team Foundation of Department of Geology,Northwest University,Xian。
文摘Tectonic activity occurred during the depositional period of the Enping Formation in the southern Baiyun Sag in the Pearl River Mouth Basin,with a series of synsedimentary faults and a set of large fan delta reservoir bodies developing.There is no data from drilling,cores,etc.for this area,so this paper applies three-dimensional seismic data to study the structural style of the steep slope zone,the seismic facies characteristics of fan deltas,and the source-sink system and sedimentary model of the Enping Formation.The control action of tectonic activity on fan deltaic sedimentary systems is studied by combining interpretation of fault systems,dissection of structural styles,seismic reflection structure,seismic facies geometry,and seismic attribute analysis,together with theoretical analysis of the source-sink deposition process.The Baiyun Sag has experienced tectonic activity since the Eocene,and a series of synsedimentary faults are developed in the southern steep slope zone.Under the common control of multiple large synsedimentary faults,a large ancient gully formed in the steep slope zone in the south,which gradually widened from south to north.The uplift area in the southern part of the sag was exposed for a long time during the deposition of the Enping Formation and consequently suffered weathering and erosion.The resulting sediments were transported through a system of provenance channels composed of slopes and an ancient gully to the depression area,where they were deposited and eventually converged to form a large fan delta.The fan delta presents the overall characteristics of NS strong wedge reflection and EW strong domal reflection—thick in the middle part and thin in the wings.It displays a lobe-shaped distribution on the plane,with the fan root pointing to the south slope.According to differences in reflection intensity from bottom to top,it can be subdivided into three stages of progradational sedimentary bodies—the southern uplift and denudation zone,the large ancient gully,and the fan delta—which together constitute a complete source-sink system.This represents a sedimentary model of progradational fan delta under the overall joint control of the re stricted ancient gully and syndepositional faults.
基金Projects BK2005018 supported by the Natural Science Foundation of Jiangsu Province CX07B-061z by the Graduate Research and Innovation Plan of Jiangsu Province
文摘The impeller of turbo machinery is a typical nonlinear multi-oscillator system.The vibration of each module is coupling, including fluid-solid coupling of the blade.The subject of our investigation was a KDF-5 mine fan for which we analyzed air vibration signals and axial vibration signals by using correlation dimension analysis under five variable working conditions.The results indicate that their correlation dimension curves show a uniform trend.That is to say, the characteristics of the variation signals of the integral structure are correlated and mutually embodied.It proves that it is possible to monitor the working state of a mine fan by coupling the vibration signals and air vibration signals for these are more sensitive in representing the status of the impeller system.
基金The National Natural Science Foundation of China under contract Nos 42076066,92055203 and U20A20100。
文摘There are many large-scale Cenozoic sedimentary basins with plentiful river deltas,deep-water fans and carbonate platforms in the southern South China Sea.The Crocker Fan was deposited as a typical submarine fan during the late Eocene–early Miocene,and stretches extensively across the entire Sarawak–Sabah of the northern Borneo area.However,systematic analyses are still lacking regarding its sediment composition and potential source suppliers.No consensus has been reached yet on the provenance evolution and sedimentary infilling processes,which seriously impeded the oil-and-gas exploration undertakings.By combining with sedimentaryfacies identification,heavy mineral assemblages,elemental geochemistry and detrital zircon U-Pb dating,this paper aims to generalize an integrated analysis on the potential provenance terranes and restore source-to-sink pathways of the Crocker Fan.In general,the Crocker Fan was initially formed over the Cretaceous–lower/middle Eocene Rajang Group by an angular Rajang unconformity.The continual southward subduction of the protoSouth China Sea resulted in magmatic activities and subsequent regional deformation and thrusting along the Lupar Line in the northern Borneo.The lowermost Crocker sequence is featured by a thick conglomerate layer sourced from in-situ or adjacent paleo-uplifts.From the late Eocene to the early Miocene,the Crocker Fan was constantly delivered with voluminous detritus from the Malay Peninsula of the western Sundaland.The Zengmu Basin was widely deposited with delta plain and neritic facies sediments,while the Brunei-Sabah Basin,to the farther east,was ubiquitously characterized by turbiditic sequences.The Crocker Fan successions are overall thick layers of modest-grained sandstones,which formed high-quality reservoirs in the southern South China Sea region.
基金financed by the grants from The National Social Science Fund of China,Late Stage Funding (No. 21FZWB005)。
文摘Zhao Rukuo's Zhu Fan Zhi in the Southern Song dynasty was the first book in the history of China to systematically describe the “Maritime Silk Road”, recording the geography, products, customs, trade, etc. of more than 50 foreign countries and regions. The book included a large amount of medical literature, introducing medical customs and the production of drugs in various places, as well as the efficacy of some medicine. These materials are of unique value for understanding the medicine trade in the Song dynasty, and even the medical culture along the “Maritime Road of Aromatic Medicine”.
文摘[Objectives]The purpose was to solve the problem that high temperature and high humidity will seriously affect the health and weight gain of pigs.[Methods]The fan-water curtain cooling system was popularized in large-scale pig farms.[Results]The pigs using the water curtain cooling system gained 1.5 kg from weaning to the day of slaughter.The feed-to-gain ratio was 2.43∶1,a year-on-year decrease of 0.05.The average weight gain per pig was about 5-10 kg.[Conclusions]The application of fan-water curtain cooling system in pig production can accelerate the growth rate of pigs,reduce the occurrence of diseases and improve the utilization of feed,eventually improving the productivity of pigs.
文摘In this paper the application of a cleaning system which was made up of a centrifugal fan with double channel and one sieve to 4LZ-3.5 combine was introduced. This cleaning system with double channel compared with the traditional air-sieve cleaning system of combines may omit one two sieves and simplify the transmission mechanism. It is also compared with the present cleaning system with double channel applied to some combines, such as the Commandor 112CS/ 228CS combines of Claas Corporation in Germany and the MAXIMIZERTMombincs of John Deerc company in U.S.A. It may omit one sieve and the preclcaner and simlify the transmission mechanism. The measuring results indicated that the cleaning ratio of wheat grain is 99.1% and the cleaning loss ratio of wheat is 0.17% when the feed rate is 4.01 kg/ s.
文摘To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature is 26oC. Results show that the temperature of the substrate of LEDs reaches 62oC without the fan, however, it reaches only 32oC when the best cooling condition appears. The temperature of the LEDs decreases by 30oC since the heat produced by LEDs is transferred rapidly by the fan. The experiment demonstrates that the cooling system with the fan has good performance.