期刊文献+
共找到90,344篇文章
< 1 2 250 >
每页显示 20 50 100
Data mining optimization of laidback fan-shaped hole to improve film cooling performance 被引量:2
1
作者 WANG Chun-hua ZHANG Jing-zhou ZHOU Jun-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1183-1189,共7页
To improve the cooling performance, shape optimization of a laidback fan-shaped film cooling hole was performed. Three geometric parameters, including hole length, lateral expansion angle and forward expansion angle, ... To improve the cooling performance, shape optimization of a laidback fan-shaped film cooling hole was performed. Three geometric parameters, including hole length, lateral expansion angle and forward expansion angle, were selected as the design parameters. Numerical model of the film cooling system was established, validated, and used to generate 32 groups of training samples. Least square support vector machine(LS-SVM) was applied for surrogate model, and the optimal design parameters were determined by a kind of chaotic optimization algorithm. As hole length, lateral expansion angle and forward expansion angle are 90 mm, 20° and 5°, the area-averaged film cooling effectiveness can reach its maximum value in the design space. LS-SVM coupled with chaotic optimization algorithm is a promising scheme for the optimization of shaped film cooling holes. 展开更多
关键词 gas TURBINE laidback fan-shaped film COOLING HOLES OPTIMIZATION support vector machine (SVM) CHAOTIC OPTIMIZATION algorithm
下载PDF
Analysis of the interaction between bolt-reinforced rock and surface support in tunnels based on convergence-confinement method 被引量:2
2
作者 Zhenyu Sun Dingli Zhang +2 位作者 Qian Fang Yanjuan Hou Nanqi Huangfu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1936-1951,共16页
To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb... To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design. 展开更多
关键词 Analytical model Longitudinal tunnel displacement Fictitious pressure Active rockbolts Surface support reaction pressure tunnel design
下载PDF
Mechanism of high-preload support based on the NPR anchor cable in layered soft rock tunnels 被引量:1
3
作者 SUI Qiru HE Manchao +3 位作者 SHI Mengfan TAO Zhigang ZHAO Feifei ZHANG Xiaoyu 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1403-1418,共16页
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d... The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data. 展开更多
关键词 tunnel engineering Soft rock High-preload support NPR anchor cables
下载PDF
Probabilistic analysis of tunnel face seismic stability in layered rock masses using Polynomial Chaos Kriging metamodel 被引量:2
4
作者 Jianhong Man Tingting Zhang +1 位作者 Hongwei Huang Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2678-2693,共16页
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines... Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction. 展开更多
关键词 tunnel face stability Layered rock masses Polynomial Chaos Kriging(PCK) Sensitivity index Seismic loadings
下载PDF
Optimization of integrated geological-engineering design of volume fracturing with fan-shaped well pattern
5
作者 TANG Jizhou WANG Xiaohua +2 位作者 DU Xianfei MA Bing ZHANG Fengshou 《Petroleum Exploration and Development》 SCIE 2023年第4期971-978,共8页
According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method... According to the variable toe-to-heel well spacing, combined with the dislocation theory, discrete lattice method, and finite-element-method(FEM) based fluid-solid coupling, an integrated geological-engineering method of volume fracturing for fan-shaped well pattern is proposed considering the geomechanical modeling, induced stress calculation, hydraulic fracturing simulation, and post-frac productivity evaluation. Besides, we propose the differential fracturing design for the conventional productivity-area and the potential production area for fan-shaped horizontal wells. After the fracturing of the conventional production area for H1 fan-shaped well platform, the research shows that the maximum reduction of the horizontal principal stress difference in the potential productivity-area is 0.2 MPa, which cannot cause the stress reversal, but this reduction is still conducive to the lateral propagation of hydraulic fractures. According to the optimized fracturing design, in zone-Ⅰ of the potential production area, only Well 2 is fractured, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage;in zone-Ⅱ, Well 2 is fractured before Well 3, with a cluster spacing of 30 m and an injection rate of 12 m^(3)/min per stage. The swept area of the pore pressure drop in the potential production area is small, showing that the reservoir is not well developed. The hydraulic fracturing in the toe area can be improved by, for example, properly densifying the fractures and adjusting the fracture distribution, in order to enhance the swept volume and increase the reservoir utilization. 展开更多
关键词 shale oil fan-shaped well pattern horizontal well geological model hydraulic fracturing productivity evaluation integrated geological-engineering design
下载PDF
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling 被引量:1
6
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves Underground tunnels Vulnerability functions Brittle damage FLAC3D Numerical modeling
下载PDF
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel 被引量:1
7
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
8
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
下载PDF
Prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum 被引量:1
9
作者 Fan Wang Xiuli Du Pengfei Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期192-212,共21页
This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of... This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum. 展开更多
关键词 Shield tunnelling Sandy cobble stratum Subsurface settlement Volumetric deformation mode Stochastic medium theory
下载PDF
Impact of surface-reflected seismic waves on the seismic isolation performance of circular tunnel isolation layers 被引量:1
10
作者 LU Jiahui LUO Junjie +3 位作者 HUANG Xiangyun HONG Junliang HE YanXin ZHOU Fulin 《Journal of Mountain Science》 SCIE CSCD 2024年第3期901-917,共17页
Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored... Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers. 展开更多
关键词 Circular tunnel seismic isolation Surface reflection Response of liners Wave-function expansion method
下载PDF
Numerical analysis of moving train induced vibrations on tunnel,surrounding ground and structure 被引量:1
11
作者 Swati Srivastav Sowmiya Chawla Swapnil Mishra 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期179-192,共14页
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ... This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures. 展开更多
关键词 moving train load tunnelS vibration effect finite element method(FEM) wave propagation
下载PDF
3D DEM simulation of hard rock fracture in deep tunnel excavation induced by changes in principal stress magnitude and orientation 被引量:2
12
作者 Weiqi Wang Xia-Ting Feng +2 位作者 Qihu Wang Rui Kong Chengxiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3870-3884,共15页
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ... To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress. 展开更多
关键词 Deep hard rock tunnel Three-dimensional(3D)discrete element model(DEM) Magnitude and orientation of principal stress Transient unloading Fracture mechanism
下载PDF
Application of excavation compensation method for enhancing stability and efficiency in shallow large-span rock tunnels
13
作者 BIAN Wen-hui YANG Jun +2 位作者 ZHU Chun WANG Ke-xue XU Dong-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3242-3263,共22页
Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address the... Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address these issues.Utilizing five key technologies,the ECM effectively modulates radial stress post-excavation,redistributes stress in the surrounding rock,and eliminates tensile stress at the excavation face.Pre-tensioning measures further enhance the rock’s residual strength,establishing a new stability equilibrium.Field tests corroborate the method’s effectiveness,demonstrating a crown settlement reduction of 3–8 mm,a nearly 50%decrease compared to conventional construction approaches.Additionally,material consumption and construction duration were reduced by approximately 30%–35%and 1.75 months per 100 m,respectively.Thus,the ECM represents a significant innovation in enhancing the stability and construction efficiency of large-span rock tunnels,marking a novel contribution to the engineering field. 展开更多
关键词 excavation compensation method rocky tunnels shallow spanning tunnels tunnel support field test
下载PDF
Stability analysis of tunnel face reinforced with face bolts
14
作者 TIAN Chongming JIANG Yin +3 位作者 YE Fei OUYANG Aohui HAN Xingbo SONG Guifeng 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2445-2461,共17页
Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systemat... Face bolting has been widely utilized to enhance the stability of tunnel face,particularly in soft soil tunnels.However,the influence of bolt reinforcement and its layout on tunnel face stability has not been systematically studied.Based on the theory of linear elastic mechanics,this study delved into the specific mechanisms of bolt reinforcement on the tunnel face in both horizontal and vertical dimensions.It also identified the primary failure types of bolts.Additionally,a design approach for tunnel face bolts that incorporates spatial layout was established using the limit equilibrium method to enhance the conventional wedge-prism model.The proposed model was subsequently validated through various means,and the specific influence of relevant bolt design parameters on tunnel face stability was analyzed.Furthermore,design principles for tunnel face bolts under different geological conditions were presented.The findings indicate that bolt failure can be categorized into three stages:tensile failure,pullout failure,and comprehensive failure.Increasing cohesion,internal friction angle,bolt density,and overlap length can effectively enhance tunnel face stability.Due to significant variations in stratum conditions,tailored design approaches based on specific failure stages are necessary for bolt design. 展开更多
关键词 Highway tunnels tunnel face Face bolts Limit equilibrium method Slice method
下载PDF
Ground settlement and tunnel response due to twin-curved shield tunnelling in soft ground with small clear distance
15
作者 Yao Hu Haoran Tang +4 位作者 Yinggang Xu Huayang Lei Peng Zeng Kai Yao Yabo Dong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3122-3135,共14页
Twin curved tunnels are often encountered in shield tunnelling,where significant complexities in densely exploited underground space are observed.In this study,the ground settlement and tunnel deformation due to twin-... Twin curved tunnels are often encountered in shield tunnelling,where significant complexities in densely exploited underground space are observed.In this study,the ground settlement and tunnel deformation due to twin-curved shield tunnelling in soft ground were investigated using numerical simulation and field monitoring.Different curvature radii of twin curved tunnels and subsequent effects of tunnel construction were considered to reveal the tunnelling effect on ground surface settlement and tunnel deformation.The results show that the settlement trough yields one offset towards inside of curved shield tunnelling.The location of settlement trough and maximum settlement were affected by curvature radius but except for the shape and width of settlement trough.Adjacent parallel twin-curved shield tunnelling could increase the offset of existing settlement trough and maximum settlement.Then,an empirical prediction of surface settlement trough due to twin-curved shield tunnelling with same tunnel diameters in soft clay was proposed,which was applicable to curvature radius less than 800 m.Finally,a minimum radius of 600 m of curvature tunnel was proposed in terms of allowable convergence deformation of tunnel.The result could provide guidance on safety evaluation for twin curved shield tunnelling construction. 展开更多
关键词 Shield tunnelling Curvature radius Ground settlement tunnel deformation Numerical simulation
下载PDF
Effect of burial depth of a new tunnel on the seismic response of an existing tunnel
16
作者 Ma Runbo Cao Qikun +3 位作者 Lu Shasha Zhao Dongxu Zhang Yanan Xu Hong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期863-882,共20页
Burial depth is a crucial factor affecting the forces and deformation of tunnels during earthquakes.One key issue is a lack of understanding of the effect of a change in the buried depth of a single-side tunnel on the... Burial depth is a crucial factor affecting the forces and deformation of tunnels during earthquakes.One key issue is a lack of understanding of the effect of a change in the buried depth of a single-side tunnel on the seismic response of a double-tunnel system.In this study,shaking table tests were designed and performed based on a tunnel under construction in Dalian,China.Numerical models were established using the equivalent linear method combined with ABAQUS finite element software to analyze the seismic response of the interacting system.The results showed that the amplification coefficient of the soil acceleration did not change evidently with the burial depth of the new tunnel but decreased as the seismic amplitude increased.In addition,the existing tunnel acceleration,earth pressure,and internal force were hardly affected by the change in the burial depth;for the new tunnel,the acceleration and internal force decreased as the burial depth increased,while the earth pressure increased.This shows that the earth pressure distribution in a double-tunnel system is relatively complex and mainly concentrated on the arch spandrel and arch springing of the relative area.Overall,when the horizontal clearance between the center of the two tunnels was more than twice the sum of the radius of the outer edges of the two tunnels,the change in the burial depth of the new tunnel had little effect on the existing one,and the tunnel structure was deemed safe.These results provide a preliminary understanding and reference for the seismic performance of a double-tunnel system. 展开更多
关键词 burial depth new tunnel existing tunnel seismic response shaking table tests numerical simulations
下载PDF
Magnetic Switching Dynamics and Tunnel Magnetoresistance Effect Based on Spin-Splitting Noncollinear Antiferromagnet Mn_(3)Pt
17
作者 朱蒙 董建艇 +4 位作者 李新录 郑凡星 周晔 吴琨 张佳 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期132-138,共7页
In comparison to ferromagnets,antiferromagnets are believed to have superior advantages for applications in next-generation magnetic storage devices,including fast spin dynamics,vanishing stray fields and robust again... In comparison to ferromagnets,antiferromagnets are believed to have superior advantages for applications in next-generation magnetic storage devices,including fast spin dynamics,vanishing stray fields and robust against external magnetic field,etc.However,unlike ferromagnetic orders,which could be detected through tunneling magnetoresistance effect in magnetic tunnel junctions,the antiferromagnetic order(i.e.,Néel vector)cannot be effectively detected by the similar mechanism due to the spin degeneracy of conventional antiferromagnets.Recently discovered spin-splitting noncollinear antiferromagnets,such as Mn_(3)Pt with momentum-dependent spin polarization due to their special magnetic space group,make it possible to achieve remarkable tunneling magnetoresistance effects in noncollinear antiferromagnetic tunnel junctions.Through first-principles calculations,we demonstrate that the tunneling magnetoresistance ratio can reach more than 800% in Mn_(3)Pt/perovskite oxides/Mn_(3)Pt antiferromagnetic tunnel junctions.We also reveal the switching dynamics of Mn_(3)Pt thin film under magnetic fields using atomistic spin dynamic simulation.Our study provides a reliable method for detecting Néel vector of noncollinear antiferromagnets through the tunnel magnetoresistance effect and may pave its way for potential applications in antiferromagnetic memory devices. 展开更多
关键词 tunnelING MAGNETORESISTANCE MOMENTUM
下载PDF
Erratum to“Tunneling Electrons Triggered Energy Transfer between Coherently Coupled Donor-Acceptor Molecules”
18
作者 Huifang Wang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第5期696-696,共1页
In the original publication of my article,“Tunneling Electrons Triggered Energy Transfer between Coherently Coupled Donor-Acceptor Molecules”,which was published in Chinese Journal of Chemical Physics,Vol.37,No.4,pa... In the original publication of my article,“Tunneling Electrons Triggered Energy Transfer between Coherently Coupled Donor-Acceptor Molecules”,which was published in Chinese Journal of Chemical Physics,Vol.37,No.4,pages 497-504,I have identified an innegligible error that requires correction.I apologize for any inconvenience and appreciate the opportunity to clarify it in the following:Error Description:In page 499,since the words “FIG.2(b,d)”in line 78 are mentioned earlier than the words“FIG.1(a)”in line 82 in the submitted manuscript,the order of Figure 1 and Figure 2 are changed automatically in the official publication of the article,which makes the logical relationship of the article confused to a significant degree. 展开更多
关键词 FIGURE tunnel ELECTRON
下载PDF
Carpal Tunnel Syndrome: A Marker for Amyloidosis
19
作者 Luciana León Cejas Miguel Saucedo +9 位作者 Mayra Aldecoa Gustavo Teruya Fabricio Silva Alvaro Muratore Gonzalo Viollaz Cintia Marchesoni Ana Pardal Pablo Dezanzo Alejandro Iotti Ricardo Reisin 《World Journal of Neuroscience》 CAS 2024年第3期92-101,共10页
Introduction: Amyloidosis are systemic conditions and carpal tunnel syndrome (CTS) precedes the principal systemic complications and can be used as an early marker. Our objective was to determine the frequency of amyl... Introduction: Amyloidosis are systemic conditions and carpal tunnel syndrome (CTS) precedes the principal systemic complications and can be used as an early marker. Our objective was to determine the frequency of amyloid deposition in idiopathic CTS and its systemic impact. Methods: We retrospectively evaluated patients with CTS between September 2019 to January 2020. Samples from the anterior carpal ligament were pathologically evaluated and amyloid deposition was confirmed by apple-green birefringence on polarized light using Congo red stain. When amyloid was detected we performed genetic testing for transthyretin variants (ATTRv), immunofixation electrophoresis in serum and urine for light chains and multidisciplinary evaluation. Results: Thirty consecutive patients were included, 19 women, 11 men, mean age 70 years old (range 42 - 89 years). We identified 3 patients (10%) with amyloid deposits (mean age: 78.6 years, 2 men, 1 woman). Genetic testing for ATTRv and light chains studies were negative. During follow-up: The first patient required aortic valve replacement. The second patient developed progressive cardiac failure with syncopal episodes, atrioventricular block and atrial fibrillation and required a pacemaker and anticoagulation. The third patient had unexplained chronic edemas. The cardiac evaluation in all 3 patients revealed left ventricular hypertrophy and myocardial uptake (Perugini Score > 2) in their nuclear bone scintigraphies with technetium pyrophosphate. Two patients were treated with tafamidis and one patient died due to refractory cardiac insufficiency. Discussion: Our findings underline the importance of investigating amyloidosis in idiopathic CTS. The identification of deposits allows early diagnosis of cardiac amyloidosis leading to timely intervention and treatment. 展开更多
关键词 Carpal tunnel AMYLOID TRANSTHYRETIN Amyloid Cardiac Transthyretin Variants Light Chains
下载PDF
Evaluating the characteristics of geological structures in karst groundwater inflow, Nowsud Tunnel
20
作者 BAYAT Narges SADEGHI Erfan NASSERY Hamid Reza 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3434-3452,共19页
Highly permeable geological structures such as dissolution channels, open fractures, and faults create environmental challenges regard to hydrological and hydrogeological aspects of underground construction, often cau... Highly permeable geological structures such as dissolution channels, open fractures, and faults create environmental challenges regard to hydrological and hydrogeological aspects of underground construction, often causing significant groundwater inflow during drilling due to the limitations of empirical and analytical methods. This study aims to identify the geological factors influencing water flow into the tunnel. High-flow zones' geological features have been identified and examined for this purpose. According to the geological complexity of the Nowsud tunnel, presence of different formations with different permeability and karstification have led to a high volume of underground inflow water (up to 4700 L/s) to the tunnel. The Nowsud tunnel faces significant geological and hydrogeological challenges due to its passage through the Ilam formation's LI2 unit, characterized by dissolution channels, faults, and fractures. The highest inflow rate (4700 L/s) occurred in the Hz-9 zone within the Zimkan anticline. The relationship between geological features and groundwater inflow indicates that anticlines are more susceptible to inflow than synclines. Additionally, different types of faults exhibit varying hydraulic effects, with strike-slip faults having the most significant impact on groundwater inflow, thrust faults conducting less water into the tunnel, and inflow through normal faults being negligible compared to the other two types of faults. The novelty of this paper lies in its detailed analysis of geological features influencing groundwater inflow into the Nowsud tunnel, providing empirical data on high-flow zones and differentiating the hydraulic effects of various fault types, which enhances the understanding and prediction of groundwater inflow in underground constructions. 展开更多
关键词 Geological structures Groundwater inflow HYDROGEOLOGY Nowsud tunnel KARST
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部