Objective: The aim of the study was to explore the effect of demethylating agent 5-Aza-2'-deoxycytidine (5-ADC) on expression of Fanconi anemia complementation group F (FANCF) gene and the proliferation of cervica...Objective: The aim of the study was to explore the effect of demethylating agent 5-Aza-2'-deoxycytidine (5-ADC) on expression of Fanconi anemia complementation group F (FANCF) gene and the proliferation of cervical cancer cells, to observe cell's sensitivity to chemotherapeutic drug taxol, and to explore the antitumor effect of 5-ADC as well as the new treatment of cervical cancer. Methods: Cervical cancer cell lines SiHa (FANCF gene full-methylated) and Hela (unmethylated) were treated with 5-ADC. We used the methylation-specific PCR (MSP), reverse transcription-polymerase chain reaction (RT-PCR) and Western blot to detect the FANCF methylation, mRNA and protein respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the proliferation of cells. The cytotoxicity of taxol was measured by flow cytometer. The nude mice bearing SiHa was used to observe the effect of 5-ADC in vivo. Results: Inhibition of DNA promoter methylation by 5-ADC reactivated the expression of FANCF mRNA and protein in SiHa cells, consistent with decreased growth speed and increased taxol resistance. These results were proven in experiments in vivo. Conclusion: The 5-ADC probably become a potential treatment drug through inhibiting the proliferation of cervical cancer cells in taxol-resistant patients.展开更多
基金Supported by the grant from the National Science Foundation of Chongqing (No. cstc2011jjA10081)
文摘Objective: The aim of the study was to explore the effect of demethylating agent 5-Aza-2'-deoxycytidine (5-ADC) on expression of Fanconi anemia complementation group F (FANCF) gene and the proliferation of cervical cancer cells, to observe cell's sensitivity to chemotherapeutic drug taxol, and to explore the antitumor effect of 5-ADC as well as the new treatment of cervical cancer. Methods: Cervical cancer cell lines SiHa (FANCF gene full-methylated) and Hela (unmethylated) were treated with 5-ADC. We used the methylation-specific PCR (MSP), reverse transcription-polymerase chain reaction (RT-PCR) and Western blot to detect the FANCF methylation, mRNA and protein respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the proliferation of cells. The cytotoxicity of taxol was measured by flow cytometer. The nude mice bearing SiHa was used to observe the effect of 5-ADC in vivo. Results: Inhibition of DNA promoter methylation by 5-ADC reactivated the expression of FANCF mRNA and protein in SiHa cells, consistent with decreased growth speed and increased taxol resistance. These results were proven in experiments in vivo. Conclusion: The 5-ADC probably become a potential treatment drug through inhibiting the proliferation of cervical cancer cells in taxol-resistant patients.