Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non- equilibrium Green's Function method in combination with density functional theory, we investigate the infl...Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non- equilibrium Green's Function method in combination with density functional theory, we investigate the influence to the transport property of a CO molecule adsorbed on one edge of a zigzag graphene nanoribbon device. Our results show that the CO molecule-adsorbed zigzag graphene nanoribbon devices can exhibit the Fano resonance phenomenon. Moreover, the distance between CO molecules and zigzag graphene nanoribbons is closely related to the energy sites of the Fano resonance. Our theoretical analyses indicate that the Fano resonance would be attributed to the interaction between CO molecules and the edge of the zigzag graphene nanoribbon device, which results in the localization of electrons and significantly changes the transmission spectrum.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 21673296the Science and technology Plan of Hunan Province under Grant No 2015RS4002the Hunan Provincial Natural Science Foundation under Grant No 2017JJ3063
文摘Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non- equilibrium Green's Function method in combination with density functional theory, we investigate the influence to the transport property of a CO molecule adsorbed on one edge of a zigzag graphene nanoribbon device. Our results show that the CO molecule-adsorbed zigzag graphene nanoribbon devices can exhibit the Fano resonance phenomenon. Moreover, the distance between CO molecules and zigzag graphene nanoribbons is closely related to the energy sites of the Fano resonance. Our theoretical analyses indicate that the Fano resonance would be attributed to the interaction between CO molecules and the edge of the zigzag graphene nanoribbon device, which results in the localization of electrons and significantly changes the transmission spectrum.