We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled ^85Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through qua...We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled ^85Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters.展开更多
The even-parity autoionizing resonance series 5p^5np' [3/2]1, [1/2]1, and 5p^5nf' [5/2]3 of xenon have been investigated, excited from the two metastable states 5p^56s [3/2]2 and 5p^56s' [1/2]0 in the photon energy...The even-parity autoionizing resonance series 5p^5np' [3/2]1, [1/2]1, and 5p^5nf' [5/2]3 of xenon have been investigated, excited from the two metastable states 5p^56s [3/2]2 and 5p^56s' [1/2]0 in the photon energy range of 28000-42000 cm^-1 with experimental bandwidth of -0.1 cm^-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index and the resonance width are shown to be approximately proportional to the effective principal quantum number. The line separation of the 5p^5np' autoionizing resonances is discussed.展开更多
The even-parity autoionizing resonance series 3p^5np′[3/2]1,2, 3p^5np′[1/2] 1, and 3p^5nf′[5/2]3 of Ar have been investigated exciting from the two metastable states 3p^54s[3/2]2 and 3p^54s′[1/2]0 in the photon en...The even-parity autoionizing resonance series 3p^5np′[3/2]1,2, 3p^5np′[1/2] 1, and 3p^5nf′[5/2]3 of Ar have been investigated exciting from the two metastable states 3p^54s[3/2]2 and 3p^54s′[1/2]0 in the photon energy range of 32500-35600 cm^-1 with an experimental band- width of ~0.1 cm^-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile index and resonance widths, resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index q and the resonance widths F are shown to be approximately proportional to the effective principal quantum number n^*. The line separation of the 3p^5np′ autoionizing resonances is discussed.展开更多
在单光子29000~40000 cm 1能量范围内,获得亚稳态4p55s[3/2]2和4p55s′[1/2]0Kr原子向其4p5np′[3/2]1,2,[1/2]1和4p5nf′[5/2]3序列自电离Rydberg态跃迁的共振增强激发光谱,光谱线宽≈0.1 cm 1.这些偶宇称自电离态的激发谱呈现明显的...在单光子29000~40000 cm 1能量范围内,获得亚稳态4p55s[3/2]2和4p55s′[1/2]0Kr原子向其4p5np′[3/2]1,2,[1/2]1和4p5nf′[5/2]3序列自电离Rydberg态跃迁的共振增强激发光谱,光谱线宽≈0.1 cm 1.这些偶宇称自电离态的激发谱呈现明显的不对称线形,如此高分辨的激发谱大部分是首次报道.根据Fano线形关系对激发谱进行系统地分析,获得许多新的系统的能级位置、量子亏损、线性因子、共振宽度、共振态寿命和衰减宽度等数据,基于实验拟合所得的系统参数,我们发现线形因子和共振宽度相对有效量子数呈线性关系.另外还分析了4p5np′序列的能级间距.展开更多
The even-parity autoionizing resonance series 4p^5np' [3/2] 1,2, [ 1/2] 1, and 4p^2nf' [5/213 of krytpon have been investigated by laser excitation from the two metastable states 4p55s [3/2]2 and 4p^55s' [1/2]0 in ...The even-parity autoionizing resonance series 4p^5np' [3/2] 1,2, [ 1/2] 1, and 4p^2nf' [5/213 of krytpon have been investigated by laser excitation from the two metastable states 4p55s [3/2]2 and 4p^55s' [1/2]0 in the photon energy region of 2900(P40000 cm^-1 at experimental bandwidth of -0.1 cm-1. The excitation spectra of the even-parity autoionizing resonance series, most of which are experimentally studied for the first time in this work, show typical asymmetric line shapes. Complementary information on level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the auto- ionizing resonances are derived by Fano-type line-shape analyses of the experimental results. Results from this work indicate that the line profile index (q) and the resonance width (F) are approximately proportional to the effective principal quantum number (n*); the line separation of the 4p^5np' autoionizing resonances is also in good agreement with theoretical model展开更多
基金Supported by the National Basic Research Program of China under Grant No 2012CB922101the National Natural Science Foundation of China under Grant No 11404375supported by the National Science Foundation of USA under Grant No 1205565
文摘We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled ^85Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters.
文摘The even-parity autoionizing resonance series 5p^5np' [3/2]1, [1/2]1, and 5p^5nf' [5/2]3 of xenon have been investigated, excited from the two metastable states 5p^56s [3/2]2 and 5p^56s' [1/2]0 in the photon energy range of 28000-42000 cm^-1 with experimental bandwidth of -0.1 cm^-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index and the resonance width are shown to be approximately proportional to the effective principal quantum number. The line separation of the 5p^5np' autoionizing resonances is discussed.
文摘The even-parity autoionizing resonance series 3p^5np′[3/2]1,2, 3p^5np′[1/2] 1, and 3p^5nf′[5/2]3 of Ar have been investigated exciting from the two metastable states 3p^54s[3/2]2 and 3p^54s′[1/2]0 in the photon energy range of 32500-35600 cm^-1 with an experimental band- width of ~0.1 cm^-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile index and resonance widths, resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index q and the resonance widths F are shown to be approximately proportional to the effective principal quantum number n^*. The line separation of the 3p^5np′ autoionizing resonances is discussed.
文摘在单光子29000~40000 cm 1能量范围内,获得亚稳态4p55s[3/2]2和4p55s′[1/2]0Kr原子向其4p5np′[3/2]1,2,[1/2]1和4p5nf′[5/2]3序列自电离Rydberg态跃迁的共振增强激发光谱,光谱线宽≈0.1 cm 1.这些偶宇称自电离态的激发谱呈现明显的不对称线形,如此高分辨的激发谱大部分是首次报道.根据Fano线形关系对激发谱进行系统地分析,获得许多新的系统的能级位置、量子亏损、线性因子、共振宽度、共振态寿命和衰减宽度等数据,基于实验拟合所得的系统参数,我们发现线形因子和共振宽度相对有效量子数呈线性关系.另外还分析了4p5np′序列的能级间距.
基金financially supported by the National Natural Science Foundation of China(51007092)
文摘The even-parity autoionizing resonance series 4p^5np' [3/2] 1,2, [ 1/2] 1, and 4p^2nf' [5/213 of krytpon have been investigated by laser excitation from the two metastable states 4p55s [3/2]2 and 4p^55s' [1/2]0 in the photon energy region of 2900(P40000 cm^-1 at experimental bandwidth of -0.1 cm-1. The excitation spectra of the even-parity autoionizing resonance series, most of which are experimentally studied for the first time in this work, show typical asymmetric line shapes. Complementary information on level energies, quantum defects, line profile indices and resonance widths, resonance lifetimes and reduced widths of the auto- ionizing resonances are derived by Fano-type line-shape analyses of the experimental results. Results from this work indicate that the line profile index (q) and the resonance width (F) are approximately proportional to the effective principal quantum number (n*); the line separation of the 4p^5np' autoionizing resonances is also in good agreement with theoretical model