Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere...Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.展开更多
In this paper,we establish the unique determination result for inverse acoustic scattering of a penetrable obstacle with a general conductive boundary condition by using phaseless far field data at a fixed frequency.I...In this paper,we establish the unique determination result for inverse acoustic scattering of a penetrable obstacle with a general conductive boundary condition by using phaseless far field data at a fixed frequency.It is well-known that the modulus of the far field pattern is invariant under translations of the scattering obstacle if only one plane wave is used as the incident field,so it is impossible to reconstruct the location of the underlying scatterers.Based on some new research results on the impenetrable obstacle and inhomogeneous isotropic medium,we consider different types of superpositions of incident waves to break the translation invariance property.展开更多
The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped,...The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped, which is the fundamental displacementsolution of an elastic half space with a movable rigid half-cylin-drical inclusion impacted by out-of-plane harmonic line source loadedat any point of its horizontal surface.展开更多
The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of v...The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.展开更多
Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model corre...Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator~ zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points. If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.展开更多
The directional solidification in the undercooled pure melt influenced by a transverse far field flow was studied by using the multiple scale method. The result shows that in the boundary layer near the liquid-solid i...The directional solidification in the undercooled pure melt influenced by a transverse far field flow was studied by using the multiple scale method. The result shows that in the boundary layer near the liquid-solid interface, when affected by a transverse far field flow, the temperature distribution in the direction of crystal growth presents an oscillatory and decay front in the side of liquid phase. The crucial distinguishing feature of a temperature pattern due to the transverse convection is the additional periodic modulation of the pattern in the growth direction. The wave number and eigenvalue that satisfy the Mullins-Sekerka dispersion relation are suppressed by the transverse far field flow.展开更多
In this paper, by using functional analysis and integral equation method, we obtain some results about the properties of far field of acoustic waves in an inhomogeneous medium. And we also discuss some ill-posed inver...In this paper, by using functional analysis and integral equation method, we obtain some results about the properties of far field of acoustic waves in an inhomogeneous medium. And we also discuss some ill-posed inverse scattering problems by Tikhonov regularization method.展开更多
It is well known that a SMPS (switched-mode power supply) is easy to produce strong EMI (electromagnetic interference) and fails in EMC (electromagnetic compatibility) test for its far field radiation exceeds th...It is well known that a SMPS (switched-mode power supply) is easy to produce strong EMI (electromagnetic interference) and fails in EMC (electromagnetic compatibility) test for its far field radiation exceeds the limits between 30-200 MHz. Based on asymmetry line antenna theory, a novel far field CM (common mode) radiation model, including an equivalent driving source, radiation structure and some key influence factors, is identified and built up for a small flyback power supply. Radiation characteristics of this model are predicted by using Ansoft HFSS software and the model effectiveness is verified by experiment. In the end, the radiation role of some key factors, such as the length of output cable, common mode impedance of AC grid, layout of cable and reflected ground, are studied using simulation in detail.展开更多
The Mw 9.0 Tohoku-Oki earthquake that hit the mainland Japan on 11 th March, 2011 had resulted a devastating Tsunami due to an active thrusting between the Pacific and the North American Plates. Static and kinematic o...The Mw 9.0 Tohoku-Oki earthquake that hit the mainland Japan on 11 th March, 2011 had resulted a devastating Tsunami due to an active thrusting between the Pacific and the North American Plates. Static and kinematic offsets at the offshore epicentre of the Mw 9.0 event remain unanswered and being investigated along with their near and far field limiting distances from the epicentre. Accordingly, offset measurements from 60 continuously operating IGS and GEONET GNSS stations were radially classified from the epicentre and interpreted with analytical models to find their linear offset decay rates. Co-and post-seismic static positional anomaly offsets of sixty days show almost all near field stations had strong or appreciable eastward or south eastward static shifts. Near stations(<250 km) showed both kinematic and static offsets. GEONET station ’0175’ showed maximum resultant static offset of-4.5 m, which diminishes approximately 1-2 cm at far sites like SMST and AIRA. Characteristic decay duration(’b’) of the mean kinematic co-seismic shift(’a’)of near field stations was 17.28 s during earthquake hours with an EW component shift >1.5 m. Spatial models of projected N-S static and kinematic offsets show their asymmetrical distributions around the epicentre with maximum model offset of-1.84 m displaced towards south at-45 km north of the epicentre. The Tohoku-Oki earthquake produced a resultant kinematic offset of-10.2 m towards East at its offshore epicentre;while the estimated near field static offset is ~9.82 m. However, both estimates are bigger than double the resultant offset measured value(~4.3 m) in the Japanese mainland using GPS. The difference in the kinematic and static near field offsets highlight that the near surface had elastic or in-elastic kinematic strain dissipation as against the lithospheric level viscoelastic static response, which resulted rapid kinematic strain release(1.12 cm/km)within the limiting radius of ~220 km from the Tohoku-Oki epicentre.展开更多
Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of...Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.展开更多
A background of the electromagnetic field (EMF) measurements is presented in the work. A special attention is given to the specificity of the measurements performed in the Near Field. Factors, that should be taken int...A background of the electromagnetic field (EMF) measurements is presented in the work. A special attention is given to the specificity of the measurements performed in the Near Field. Factors, that should be taken into consideration as during the measurements as well during their analysis, are discussed. Without their understanding and considering a comparison of the measurements’ results, meters’ calibration and EMF standards comparison between different centers is impossible.展开更多
The spatial distribution of beams with orbital angular momentum in the far field is known to be extremely sensitive to angular aberrations,such as astigmatism,coma and trefoil.This poses a challenge for conventional b...The spatial distribution of beams with orbital angular momentum in the far field is known to be extremely sensitive to angular aberrations,such as astigmatism,coma and trefoil.This poses a challenge for conventional beam optimization strategies when a homogeneous ring intensity is required for an application.We developed a novel approach for estimating the Zernike coefficients of low-order angular aberrations in the near field based solely on the analysis of the ring deformations in the far field.A fast,iterative reconstruction of the focal ring recreates the deformations and provides insight into the wavefront deformations in the near field without relying on conventional phase retrieval approaches.The output of our algorithm can be used to optimize the focal ring,as demonstrated experimentally at the 100 TW beamline at the Extreme Light Infrastructure-Nuclear Physics facility.展开更多
Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbu...Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence.展开更多
On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presen...On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presented by a combination of analysis of observations and numerical simulation based on sources of USGS and NOAA. The records of 16 DART buoys in deep water, ten tidal gauges along coasts of near-field, and ten coastal gauges in the far-field are studied by applying Fourier analyses. The numerical simulation based on nonlinear shallow water equations and nested grids is carried out to provide overall tsunami propagation scenarios, and the results match well with the observations in deep water and but not well in coasts closed to the epicenter. Due to the short distance to the epicenter and the shelf resonance of southern Peru and Chile, the maximum amplitude ranged from 0.1 m to 2 m, except for Coquimbo. In deep water, the maximum amplitude of buoys decayed from 9.8 cm to 0.8 cm, suggesting a centimeter-scale Pacific-wide tsunami, while the governing period was 13-17 min and 32 min. Whereas in the far-field coastal region, the tsunami wave amplified to be around 0.2 m to 0.8 m, mostly as a result of run-up effect and resonance from coast reflection. Although the tsunami was relatively moderate in deep water, it still produced non-negligible tsunami hazards in local region and the coasts of farfield.展开更多
The motion of a bubble near the free surface is solved by the boundary element method based on the linear wave equation, and the influence of fluid compressibility on bubble dynamics is analyzed. Based on the solution...The motion of a bubble near the free surface is solved by the boundary element method based on the linear wave equation, and the influence of fluid compressibility on bubble dynamics is analyzed. Based on the solution of the bubble motion, the far-field radiation noise induced by the bubble is calculated using Kirchhoff moving boundary integral equation, and the influence of free surface on far-field noise is researched. As the results, the oscillation amplitude of the bubble is weakened in compressible fluid compared with that in incompressible fluid, and the free surface amplifies the effect of fluid compressibility. When the distance between the bubble and an observer is much larger than that between the bubble and free surface, the sharp wave trough of the sound pressure at the observer occurs. With the increment of the distance between the bubble and free surface, the time of the wave trough appearing is delayed and the value of the wave trough increase. When the distance between the observer and the bubble is reduced, the sharp wave trough at the observer disappears.展开更多
Theoretical horizontal displacements caused by the 2004 Sumatra earthquake in the Sichuan-Yunnan area have been calculated according to a spherical dislocation theory and an earthquake-fault model. The results show th...Theoretical horizontal displacements caused by the 2004 Sumatra earthquake in the Sichuan-Yunnan area have been calculated according to a spherical dislocation theory and an earthquake-fault model. The results show that the theoretical displacements are basically consistent with the GPS observations in situ. On this basis,we have calculated the co-seismic displacements, strains, changes of gravity and geoid of the whole Earth, including China mainland and vicinity, caused by this earthquake. Key wards:展开更多
Large earthquakes cause observable changes in the Earth’s gravity field, which have been detected by the Gravity Recovery and Climate Experiment (GRACE). Since most previous studies focus on the detection of near-fie...Large earthquakes cause observable changes in the Earth’s gravity field, which have been detected by the Gravity Recovery and Climate Experiment (GRACE). Since most previous studies focus on the detection of near-field gravity effects, this study provides the results from the medium- to far-field gravity changes caused by the 2004 Sumatra-Andaman earthquake that are recorded within GRACE monthly solutions. Utilizing a spherical-earth dislocation model we documented that large-scale signals predominate in the global field of the coseismic gravity changes caused by the earthquake. After removing the near-field effects, the coseismic gravity changes show a negative anomaly feature with an average magnitude of -0.18×10-8 m·s-2 in the region ranging ~40° from the epicenter, which is considered as the 'medium ffield' in this study. From the GRACE data released by Center for Space Research from August 2002 to December 2008, we retrieved the large-scale gravity changes smoothed with 3 000 km Gaussian ffilter. The results show that the coseismic gravity changes detected by GRACE in the medium field have an average of (-0.20±0.06)×10-8 m·s-2, which agrees with the model prediction. The detection confirms that GRACE is sensitive to large-scale medium-field coseismic gravitational effects of mega earthquakes, and also validates the spherical-earth dislocation model in the medium field from the perspective of satellite gravimetry.展开更多
Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices.The middle dielectric layer of conventional metamaterial absorber...Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices.The middle dielectric layer of conventional metamaterial absorbers has always been solid.Researchers could not detect the near field distribution in this layer or utilize it effectively.Here,we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers.We demonstrate strong,position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber.We measure the terahertz far-field absorption as the driving voltage increases.By combining experimental results with liquid crystal simulations,we verify the near-field distribution in the middle layer indirectly and bridge the nearfield and far-field observations.Our work opens new opportunities for creating high-performance,fast,tunable,terahertz metamaterial devices that can be applied in biological imaging and sensing.展开更多
A far-field optical lithography is developed in this paper. By designing the structure of a far-field optical superlens, lithographical resolution can be improved by using a conventional UV light source. The finite di...A far-field optical lithography is developed in this paper. By designing the structure of a far-field optical superlens, lithographical resolution can be improved by using a conventional UV light source. The finite different time domain numerical studies indicate that the lithographic resolution at 50 nm line width is achievable with the structure shown in this paper by using 365 nm wavelength light, and the light can be transferred to a far distance in the photoresist.展开更多
This paper is concerned with the properties of propagation fax-field patterns corresponding to the scattering of time harmonic acoustic waves by a bounded penetrable obstacle in an ocean waveguide. The sets of solutio...This paper is concerned with the properties of propagation fax-field patterns corresponding to the scattering of time harmonic acoustic waves by a bounded penetrable obstacle in an ocean waveguide. The sets of solutions to the transmission problem are constructed such that the restriction of these solutions to the boundary of the penetrable obstacle is dense in a Hilbert space. Then conditions under which a set of propagation far-field patterns is complete in a Hilbert space are determined. These properties are important in investigating inverse transmission problems in an ocean waveguide.展开更多
基金This work is supported by Academic Research Fund Tier 2,Ministry of Education-Singapore(MOE2019-T2-2-147)T.C.acknowledges support from the National Key Research and Development Program of China(2019YFA0709100,2020YFA0714504).
文摘Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.
文摘In this paper,we establish the unique determination result for inverse acoustic scattering of a penetrable obstacle with a general conductive boundary condition by using phaseless far field data at a fixed frequency.It is well-known that the modulus of the far field pattern is invariant under translations of the scattering obstacle if only one plane wave is used as the incident field,so it is impossible to reconstruct the location of the underlying scatterers.Based on some new research results on the impenetrable obstacle and inhomogeneous isotropic medium,we consider different types of superpositions of incident waves to break the translation invariance property.
文摘The Green's function is used to solve the scattering far fieldsolution of SH-wave by a mov- able rigid cylindrical interfaceinclusion in a linear elastic body. First, a suitable Green'sfunction is devel- oped, which is the fundamental displacementsolution of an elastic half space with a movable rigid half-cylin-drical inclusion impacted by out-of-plane harmonic line source loadedat any point of its horizontal surface.
基金Project(51178342)supported by the National Natural Science Foundation of ChinaProject(KLE-TJGE-C1301)supported by the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education(Tongji University)under the International Cooperation and Exchange Program,China
文摘The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574097).
文摘Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator~ zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points. If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.
基金This work was financially supported by the Major State Basic Research Development Program of China (973 Program, No.2006CB605205)
文摘The directional solidification in the undercooled pure melt influenced by a transverse far field flow was studied by using the multiple scale method. The result shows that in the boundary layer near the liquid-solid interface, when affected by a transverse far field flow, the temperature distribution in the direction of crystal growth presents an oscillatory and decay front in the side of liquid phase. The crucial distinguishing feature of a temperature pattern due to the transverse convection is the additional periodic modulation of the pattern in the growth direction. The wave number and eigenvalue that satisfy the Mullins-Sekerka dispersion relation are suppressed by the transverse far field flow.
基金Shanghai Youth Science FoundationSupported in Part by Shanghai ScienceTechnology Development Foundation
文摘In this paper, by using functional analysis and integral equation method, we obtain some results about the properties of far field of acoustic waves in an inhomogeneous medium. And we also discuss some ill-posed inverse scattering problems by Tikhonov regularization method.
文摘It is well known that a SMPS (switched-mode power supply) is easy to produce strong EMI (electromagnetic interference) and fails in EMC (electromagnetic compatibility) test for its far field radiation exceeds the limits between 30-200 MHz. Based on asymmetry line antenna theory, a novel far field CM (common mode) radiation model, including an equivalent driving source, radiation structure and some key influence factors, is identified and built up for a small flyback power supply. Radiation characteristics of this model are predicted by using Ansoft HFSS software and the model effectiveness is verified by experiment. In the end, the radiation role of some key factors, such as the length of output cable, common mode impedance of AC grid, layout of cable and reflected ground, are studied using simulation in detail.
文摘The Mw 9.0 Tohoku-Oki earthquake that hit the mainland Japan on 11 th March, 2011 had resulted a devastating Tsunami due to an active thrusting between the Pacific and the North American Plates. Static and kinematic offsets at the offshore epicentre of the Mw 9.0 event remain unanswered and being investigated along with their near and far field limiting distances from the epicentre. Accordingly, offset measurements from 60 continuously operating IGS and GEONET GNSS stations were radially classified from the epicentre and interpreted with analytical models to find their linear offset decay rates. Co-and post-seismic static positional anomaly offsets of sixty days show almost all near field stations had strong or appreciable eastward or south eastward static shifts. Near stations(<250 km) showed both kinematic and static offsets. GEONET station ’0175’ showed maximum resultant static offset of-4.5 m, which diminishes approximately 1-2 cm at far sites like SMST and AIRA. Characteristic decay duration(’b’) of the mean kinematic co-seismic shift(’a’)of near field stations was 17.28 s during earthquake hours with an EW component shift >1.5 m. Spatial models of projected N-S static and kinematic offsets show their asymmetrical distributions around the epicentre with maximum model offset of-1.84 m displaced towards south at-45 km north of the epicentre. The Tohoku-Oki earthquake produced a resultant kinematic offset of-10.2 m towards East at its offshore epicentre;while the estimated near field static offset is ~9.82 m. However, both estimates are bigger than double the resultant offset measured value(~4.3 m) in the Japanese mainland using GPS. The difference in the kinematic and static near field offsets highlight that the near surface had elastic or in-elastic kinematic strain dissipation as against the lithospheric level viscoelastic static response, which resulted rapid kinematic strain release(1.12 cm/km)within the limiting radius of ~220 km from the Tohoku-Oki epicentre.
文摘Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.
文摘A background of the electromagnetic field (EMF) measurements is presented in the work. A special attention is given to the specificity of the measurements performed in the Near Field. Factors, that should be taken into consideration as during the measurements as well during their analysis, are discussed. Without their understanding and considering a comparison of the measurements’ results, meters’ calibration and EMF standards comparison between different centers is impossible.
基金funded through IOSIN,Nucleu PN-IFIN-HH 23-26 Code PN 2321Extreme Light Infrastructure-Nuclear Physics(ELI-NP)Phase II+2 种基金a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund and the Competitiveness Operational Programme(1/07.07.2016,COP,ID 1334)through IFA project ELI-RO 03/2020 Pulse-Mereadreceived funding from the European Union’s HORIZON-INFRA-2022-TECH-01 call under grant agreement number 101095207
文摘The spatial distribution of beams with orbital angular momentum in the far field is known to be extremely sensitive to angular aberrations,such as astigmatism,coma and trefoil.This poses a challenge for conventional beam optimization strategies when a homogeneous ring intensity is required for an application.We developed a novel approach for estimating the Zernike coefficients of low-order angular aberrations in the near field based solely on the analysis of the ring deformations in the far field.A fast,iterative reconstruction of the focal ring recreates the deformations and provides insight into the wavefront deformations in the near field without relying on conventional phase retrieval approaches.The output of our algorithm can be used to optimize the focal ring,as demonstrated experimentally at the 100 TW beamline at the Extreme Light Infrastructure-Nuclear Physics facility.
基金supported by the National Natural Science Foundation of China (Grant No. 60778048)
文摘Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence.
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.201405026the National Key Research and Development Program of China under contract No.2016YFC1401500the Opening Fund of State Key Laboratory of Ocean Engineering under contract No.1604
文摘On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presented by a combination of analysis of observations and numerical simulation based on sources of USGS and NOAA. The records of 16 DART buoys in deep water, ten tidal gauges along coasts of near-field, and ten coastal gauges in the far-field are studied by applying Fourier analyses. The numerical simulation based on nonlinear shallow water equations and nested grids is carried out to provide overall tsunami propagation scenarios, and the results match well with the observations in deep water and but not well in coasts closed to the epicenter. Due to the short distance to the epicenter and the shelf resonance of southern Peru and Chile, the maximum amplitude ranged from 0.1 m to 2 m, except for Coquimbo. In deep water, the maximum amplitude of buoys decayed from 9.8 cm to 0.8 cm, suggesting a centimeter-scale Pacific-wide tsunami, while the governing period was 13-17 min and 32 min. Whereas in the far-field coastal region, the tsunami wave amplified to be around 0.2 m to 0.8 m, mostly as a result of run-up effect and resonance from coast reflection. Although the tsunami was relatively moderate in deep water, it still produced non-negligible tsunami hazards in local region and the coasts of farfield.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51679044 and 51479041)
文摘The motion of a bubble near the free surface is solved by the boundary element method based on the linear wave equation, and the influence of fluid compressibility on bubble dynamics is analyzed. Based on the solution of the bubble motion, the far-field radiation noise induced by the bubble is calculated using Kirchhoff moving boundary integral equation, and the influence of free surface on far-field noise is researched. As the results, the oscillation amplitude of the bubble is weakened in compressible fluid compared with that in incompressible fluid, and the free surface amplifies the effect of fluid compressibility. When the distance between the bubble and an observer is much larger than that between the bubble and free surface, the sharp wave trough of the sound pressure at the observer occurs. With the increment of the distance between the bubble and free surface, the time of the wave trough appearing is delayed and the value of the wave trough increase. When the distance between the observer and the bubble is reduced, the sharp wave trough at the observer disappears.
基金supported by Basic Research Foundation from Institute of Earthquake Science,CEA(0210240101)
文摘Theoretical horizontal displacements caused by the 2004 Sumatra earthquake in the Sichuan-Yunnan area have been calculated according to a spherical dislocation theory and an earthquake-fault model. The results show that the theoretical displacements are basically consistent with the GPS observations in situ. On this basis,we have calculated the co-seismic displacements, strains, changes of gravity and geoid of the whole Earth, including China mainland and vicinity, caused by this earthquake. Key wards:
基金funded in parts by the Natural Science Foundation of China (grant Nos. 40974015, 41128003, 41174011 and41021061)the Open Fund of Key Laboratory of Geo-dynamic Geodesy of Chinese Academy (No. 09-18)the Open Fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (No.07-12)
文摘Large earthquakes cause observable changes in the Earth’s gravity field, which have been detected by the Gravity Recovery and Climate Experiment (GRACE). Since most previous studies focus on the detection of near-field gravity effects, this study provides the results from the medium- to far-field gravity changes caused by the 2004 Sumatra-Andaman earthquake that are recorded within GRACE monthly solutions. Utilizing a spherical-earth dislocation model we documented that large-scale signals predominate in the global field of the coseismic gravity changes caused by the earthquake. After removing the near-field effects, the coseismic gravity changes show a negative anomaly feature with an average magnitude of -0.18×10-8 m·s-2 in the region ranging ~40° from the epicenter, which is considered as the 'medium ffield' in this study. From the GRACE data released by Center for Space Research from August 2002 to December 2008, we retrieved the large-scale gravity changes smoothed with 3 000 km Gaussian ffilter. The results show that the coseismic gravity changes detected by GRACE in the medium field have an average of (-0.20±0.06)×10-8 m·s-2, which agrees with the model prediction. The detection confirms that GRACE is sensitive to large-scale medium-field coseismic gravitational effects of mega earthquakes, and also validates the spherical-earth dislocation model in the medium field from the perspective of satellite gravimetry.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921803)the National Natural Science Foundation of China(Grants Nos.61225026,61490714,11304151,and 61435008)+2 种基金the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20150845 and15KJB140004)the Open Foundation Project of National Laboratory of Solid State Microstructures,China(Grant No.M28003)the Research Center of Optical Communications Engineering&Technology,Jiangsu Province,China
文摘Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices.The middle dielectric layer of conventional metamaterial absorbers has always been solid.Researchers could not detect the near field distribution in this layer or utilize it effectively.Here,we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers.We demonstrate strong,position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber.We measure the terahertz far-field absorption as the driving voltage increases.By combining experimental results with liquid crystal simulations,we verify the near-field distribution in the middle layer indirectly and bridge the nearfield and far-field observations.Our work opens new opportunities for creating high-performance,fast,tunable,terahertz metamaterial devices that can be applied in biological imaging and sensing.
基金Project supported by the Shanghai Committee of Science and Technology of China (Grant No. 0852nm06600)the National Natural Science Foundation of China(Grant No. 60808014)
文摘A far-field optical lithography is developed in this paper. By designing the structure of a far-field optical superlens, lithographical resolution can be improved by using a conventional UV light source. The finite different time domain numerical studies indicate that the lithographic resolution at 50 nm line width is achievable with the structure shown in this paper by using 365 nm wavelength light, and the light can be transferred to a far distance in the photoresist.
基金Project supported by the National Natural Science Foundation of China (No.10672128)the Doctor Foundation of Wuhan University of Technology (No.471-38650238)the Undergraduate Innovative Foundation of Wuhan University of Technology (No.A145)
文摘This paper is concerned with the properties of propagation fax-field patterns corresponding to the scattering of time harmonic acoustic waves by a bounded penetrable obstacle in an ocean waveguide. The sets of solutions to the transmission problem are constructed such that the restriction of these solutions to the boundary of the penetrable obstacle is dense in a Hilbert space. Then conditions under which a set of propagation far-field patterns is complete in a Hilbert space are determined. These properties are important in investigating inverse transmission problems in an ocean waveguide.