The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization-maintaining optical fiber link...The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization-maintaining optical fiber links the sensor head to the source and detection system, in which the technique of phase shift cancellation is used to cancel the phase shift that accumulatein the optical fiber. Flux concentrators were exploited to enhance the YIG crystal magneto-optic sensitivity .The sensor system exhibited a noise-equivalent field of 8 pT/√Hz and a 3 dB bandwidth of ~10 MHz.展开更多
With brief statements of the linear electro-optical modulation and magnetooptical modulation, using the method of resultant of optical amplitude vectors and the methed of Jones matrix, formulas for intensity of transm...With brief statements of the linear electro-optical modulation and magnetooptical modulation, using the method of resultant of optical amplitude vectors and the methed of Jones matrix, formulas for intensity of transmitted light through the optical analyzer of various composition of electro-optical effect with magneto-optical effect are derived. The results show that the output beam from the analyzer carries information on current (or magnetic field), voltage (or electric field), active power and apparent power. When the light beam transmitted through the analyzer are transformed into electric signals, three kinds of information are included: the DC term corresponding to an active power, the term with frequency ω(50 Hz) corresponding to current or voltage, and the term with frequency 2ω(100 Hz) corresponding to an apparnt power.So, we can use the electric filter circuit to pick out the DC component for measuring active power; to pick out the component with frequency ω(50 Hz) for measuring current or voltage; and to pick out the component with frequency 2ω(100 Hz) for measuring apparent power. The paper discusses what quantities are measured when the analyzer is set on certain definite values, and ponts out the optimum selection for various measurements.展开更多
This paperdescribes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special charac...This paperdescribes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.展开更多
文摘The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization-maintaining optical fiber links the sensor head to the source and detection system, in which the technique of phase shift cancellation is used to cancel the phase shift that accumulatein the optical fiber. Flux concentrators were exploited to enhance the YIG crystal magneto-optic sensitivity .The sensor system exhibited a noise-equivalent field of 8 pT/√Hz and a 3 dB bandwidth of ~10 MHz.
文摘With brief statements of the linear electro-optical modulation and magnetooptical modulation, using the method of resultant of optical amplitude vectors and the methed of Jones matrix, formulas for intensity of transmitted light through the optical analyzer of various composition of electro-optical effect with magneto-optical effect are derived. The results show that the output beam from the analyzer carries information on current (or magnetic field), voltage (or electric field), active power and apparent power. When the light beam transmitted through the analyzer are transformed into electric signals, three kinds of information are included: the DC term corresponding to an active power, the term with frequency ω(50 Hz) corresponding to current or voltage, and the term with frequency 2ω(100 Hz) corresponding to an apparnt power.So, we can use the electric filter circuit to pick out the DC component for measuring active power; to pick out the component with frequency ω(50 Hz) for measuring current or voltage; and to pick out the component with frequency 2ω(100 Hz) for measuring apparent power. The paper discusses what quantities are measured when the analyzer is set on certain definite values, and ponts out the optimum selection for various measurements.
文摘This paperdescribes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.