In this paper, the comparison of absorbed dose measurement performed with an extrapolation chamber and a Fanner chamber in high energy electron beam is described. The experiments performed in the course of this work s...In this paper, the comparison of absorbed dose measurement performed with an extrapolation chamber and a Fanner chamber in high energy electron beam is described. The experiments performed in the course of this work show that the Xinjiang extrapolation chamber is suitable for calibration of high energy electron beams produced from medical linear accelerators.展开更多
A Farmer ion chamber with an air cavity volume is the most widely used dosimeter for accurate dose determinations in radiotherapy. The quantity of ionization in the cavity volume occurred a given radiation dose has to...A Farmer ion chamber with an air cavity volume is the most widely used dosimeter for accurate dose determinations in radiotherapy. The quantity of ionization in the cavity volume occurred a given radiation dose has to be corrected to the cavity air temperature according to a dosimetry protocol because the mass of air in the cavity volume is subject to atmospheric variations. In the present study, we aim to measure the thermal equilibration time in the cavity volume of a Farmer ion chamber for the routine dosimetry. The Farmer ion chamber’s electrode was replaced by a thin thermocouple and coated by the PMMA for a waterproofing so that the measurement of the temperature in the cavity performed in water. As a result of the measurement, A Farmer ion chamber in thermal equilibrium with waterproofing equilibrates rapidly, followed by an exponential fall-off. In water, equilibration to less than 10% of the initial temperature difference required only a few minutes. Thermal equilibrium time is hardly affected by the room temperature change.展开更多
Current output dose measurement in CT is based on (CTDI). The conventional methodology of CT dosimetric performance characterization is not appropriate to modern CT scanners with helical scanning modes, dose modulatio...Current output dose measurement in CT is based on (CTDI). The conventional methodology of CT dosimetric performance characterization is not appropriate to modern CT scanners with helical scanning modes, dose modulation, array detectors and multiple slice planes or cone-beam irradiation geometries. AAPM TG 111 report recognizes the shortfall of the CTDI methods and recommends a new technique that more accurately characterizes the dose profile from modern CT scanners, which utilizes a short conventional ion chamber rather than a pencil chamber. We developed and characterize a in-house phantom design using a three separate anatomical regions of clinical scan sequences (Head, chest and abdomen), and determined the equilibrium dose in our dose equilibrium phantom, measured if the attenuation of the beam is the equal to that of CTDI Perspex phantom and compare CTDI dose estimations using a standard pencil chamber to the dose equilibrium phantom measurements. This methodology allows measurements of the accumulated dose for any clinical scan length and allowing measurement of the equilibrium dose. Using the new methodology, we determined that the CTDI approach can underestimate the dose by 25% to 35% and all of our dose values from the water phantom and farmer chamber were independently verified with TLD measurements.展开更多
文摘In this paper, the comparison of absorbed dose measurement performed with an extrapolation chamber and a Fanner chamber in high energy electron beam is described. The experiments performed in the course of this work show that the Xinjiang extrapolation chamber is suitable for calibration of high energy electron beams produced from medical linear accelerators.
文摘A Farmer ion chamber with an air cavity volume is the most widely used dosimeter for accurate dose determinations in radiotherapy. The quantity of ionization in the cavity volume occurred a given radiation dose has to be corrected to the cavity air temperature according to a dosimetry protocol because the mass of air in the cavity volume is subject to atmospheric variations. In the present study, we aim to measure the thermal equilibration time in the cavity volume of a Farmer ion chamber for the routine dosimetry. The Farmer ion chamber’s electrode was replaced by a thin thermocouple and coated by the PMMA for a waterproofing so that the measurement of the temperature in the cavity performed in water. As a result of the measurement, A Farmer ion chamber in thermal equilibrium with waterproofing equilibrates rapidly, followed by an exponential fall-off. In water, equilibration to less than 10% of the initial temperature difference required only a few minutes. Thermal equilibrium time is hardly affected by the room temperature change.
文摘Current output dose measurement in CT is based on (CTDI). The conventional methodology of CT dosimetric performance characterization is not appropriate to modern CT scanners with helical scanning modes, dose modulation, array detectors and multiple slice planes or cone-beam irradiation geometries. AAPM TG 111 report recognizes the shortfall of the CTDI methods and recommends a new technique that more accurately characterizes the dose profile from modern CT scanners, which utilizes a short conventional ion chamber rather than a pencil chamber. We developed and characterize a in-house phantom design using a three separate anatomical regions of clinical scan sequences (Head, chest and abdomen), and determined the equilibrium dose in our dose equilibrium phantom, measured if the attenuation of the beam is the equal to that of CTDI Perspex phantom and compare CTDI dose estimations using a standard pencil chamber to the dose equilibrium phantom measurements. This methodology allows measurements of the accumulated dose for any clinical scan length and allowing measurement of the equilibrium dose. Using the new methodology, we determined that the CTDI approach can underestimate the dose by 25% to 35% and all of our dose values from the water phantom and farmer chamber were independently verified with TLD measurements.