Diversity in the biophysical and socio-economic attributes of agricultural systems makes them uniquely niche based. Farmers are expert in local biophysical and socio-economic situations and can contribute in developin...Diversity in the biophysical and socio-economic attributes of agricultural systems makes them uniquely niche based. Farmers are expert in local biophysical and socio-economic situations and can contribute in developing pragmatic indicators of agro-environmental development. During evaluation of an agricultural research project in Yunnan, China, local farmers were capable of evaluating the effects of modified technologies on existing cropping systems and discussed their attitudes to the interventions using their own indicators. Farmers' response can be grouped into seven major aspects: i) effects on income, ii) effects on production resources, iii) effects on crop management, iv) existing local knowledge about the technology, v) availability of inputs, vi) access to information, and vii) socio-economic conditions of farming households. Farmers concluded that environmental conditions in the experimental catchment in comparison to an adjacent untreated catchment were better in terms of soil and water losses, vegetation cover and natural resources, infrastructures and catchment management, use of environmentally-friendly technologies, and crop productivity. Success in soil and water conservation programmes depends on the efforts of the farmers and other local users and their greater involvement helps to identify more pragmatic indicators. Furthermore, it increases ownership of the programme, enhances interactions with the project scientists, increases farmers' awareness of ago-environmental problems and their possible consequences. These development will enable scientists to develop better targeted interventions and increase the likelihood of adoption of tested technologies by local communities. The use of paired adjacent catchments improved evaluation activities and is proposed as good practice for future catchment improvement programmes.展开更多
基金Project supported by the University of Wolverhampton, UK.
文摘Diversity in the biophysical and socio-economic attributes of agricultural systems makes them uniquely niche based. Farmers are expert in local biophysical and socio-economic situations and can contribute in developing pragmatic indicators of agro-environmental development. During evaluation of an agricultural research project in Yunnan, China, local farmers were capable of evaluating the effects of modified technologies on existing cropping systems and discussed their attitudes to the interventions using their own indicators. Farmers' response can be grouped into seven major aspects: i) effects on income, ii) effects on production resources, iii) effects on crop management, iv) existing local knowledge about the technology, v) availability of inputs, vi) access to information, and vii) socio-economic conditions of farming households. Farmers concluded that environmental conditions in the experimental catchment in comparison to an adjacent untreated catchment were better in terms of soil and water losses, vegetation cover and natural resources, infrastructures and catchment management, use of environmentally-friendly technologies, and crop productivity. Success in soil and water conservation programmes depends on the efforts of the farmers and other local users and their greater involvement helps to identify more pragmatic indicators. Furthermore, it increases ownership of the programme, enhances interactions with the project scientists, increases farmers' awareness of ago-environmental problems and their possible consequences. These development will enable scientists to develop better targeted interventions and increase the likelihood of adoption of tested technologies by local communities. The use of paired adjacent catchments improved evaluation activities and is proposed as good practice for future catchment improvement programmes.