Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,mo...Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.展开更多
Nuclear domain 10(ND10) are spherical bodies distributed throughout the nucleoplasm and measuring around 0.2-1.0 μm. First observed under an electron microscope, they were originally described as dense bodies found i...Nuclear domain 10(ND10) are spherical bodies distributed throughout the nucleoplasm and measuring around 0.2-1.0 μm. First observed under an electron microscope, they were originally described as dense bodies found in the nucleus. They are known by a number of other names, including Promyelocytic Leukemia bodies(PML bodies), Kremer bodies, and PML oncogenic domains. ND10 are frequently associated with Cajal bodies and cleavage bodies. It has been suggested that they play a role in regulating gene transcription. ND10 were originally characterized using human autoantisera, which recognizes Speckled Protein of 100 kD a, from patients with primary biliary cirrhosis. At the immunohistochemical level, ND10 appear as nuclear punctate structures, with 10 indicating the approximate number of dots per nucleus observed. ND10 do not colocalize with kinetochores, centromeres, sites of mR NA processing, or chromosomes. Resistance of ND10 antigens to nuclease digestion and salt extraction suggest that ND10 are associated with the nuclear matrix.They are often identified by immunofluorescent assay using specific antibodies against PML, Death domainassociated protein, nuclear dot protein(NDP55), and so on. The role of ND10 has long been the subject of investigation, with the specific connection of ND10 and viral infection having been a particular focus for almost 20 years. This review summarizes the relationship of ND10 and viral infection. Some future study directions are also discussed.展开更多
文摘Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.
基金Supported by A Pilot Grant from the National Center for Research Resources(G12 RR003050)the National Institute on Minority Health and Health Disparities(8G12MD007579-27)+2 种基金the National Institutes of Health(To Tang Q)an American Cancer Society Grant(117448-RSG-09-289-01-MPC)(To Tang Q)NIH/NCRR U54RR022762(To Tang Q)
文摘Nuclear domain 10(ND10) are spherical bodies distributed throughout the nucleoplasm and measuring around 0.2-1.0 μm. First observed under an electron microscope, they were originally described as dense bodies found in the nucleus. They are known by a number of other names, including Promyelocytic Leukemia bodies(PML bodies), Kremer bodies, and PML oncogenic domains. ND10 are frequently associated with Cajal bodies and cleavage bodies. It has been suggested that they play a role in regulating gene transcription. ND10 were originally characterized using human autoantisera, which recognizes Speckled Protein of 100 kD a, from patients with primary biliary cirrhosis. At the immunohistochemical level, ND10 appear as nuclear punctate structures, with 10 indicating the approximate number of dots per nucleus observed. ND10 do not colocalize with kinetochores, centromeres, sites of mR NA processing, or chromosomes. Resistance of ND10 antigens to nuclease digestion and salt extraction suggest that ND10 are associated with the nuclear matrix.They are often identified by immunofluorescent assay using specific antibodies against PML, Death domainassociated protein, nuclear dot protein(NDP55), and so on. The role of ND10 has long been the subject of investigation, with the specific connection of ND10 and viral infection having been a particular focus for almost 20 years. This review summarizes the relationship of ND10 and viral infection. Some future study directions are also discussed.