We present a design for an adaptive gain phase-locked loop (PLL) that features fast acquisition,low jitter,and wide tuning range. A dual-edge-triggered phase frequency detector (PFD) and a self-regulated voltage c...We present a design for an adaptive gain phase-locked loop (PLL) that features fast acquisition,low jitter,and wide tuning range. A dual-edge-triggered phase frequency detector (PFD) and a self-regulated voltage controlled oscillator (VCO) are employed in this design to realize the aforementioned properties. Measured results show that the experimental chip, implemented in a standard 0.5μm 5V CMOS logic process, has an acquisition time of about 150ns at 37% frequency variation and an output RMS jitter of 39ps at 640MHz.(dual-edge-triggered phase frequency detector)展开更多
In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be a...In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be able to achieve acquisition in a very short time in spite of large Doppler frequencies. However, the traditional methods cannot solve it well. This work describes a new method that uses a differential decoding technique for Doppler mitigation and a batch process of FFT (fast Fourier transform) and IFFT (invert FFT) for the purpose of parallel code phase search by frequency domain correlation. After the code phase is estimated, another FFT process is carried out to search the Doppler frequency. Since both code phase and Doppler frequency domains are searched in parallel, this architecture can provide acquisition fifty times faster than conventional FFT methods. The performance in terms of the probability of detection and false alarm are also analyzed and simulated, showing that a signal-to-noise ratio (SNR) loss of 3 dB is introduced by the differential decoding. The proposed method is an efficient way to shorten the acquisition time with slightly hardware increasing.展开更多
This paper provides a direct and fast acquisition algorithm of civilian long length(CL) codes in the L2 civil(L2C) signal. The proposed algorithm simultaneously reduces the number of fast Fourier transformation(...This paper provides a direct and fast acquisition algorithm of civilian long length(CL) codes in the L2 civil(L2C) signal. The proposed algorithm simultaneously reduces the number of fast Fourier transformation(FFT) correlation through hyper code technique and the amount of points in every FFT correlation by using an averaging correlation method. To validate the proposed acquisition performance, the paper applies this algorithm to the real L2C signal collected by the global positioning system(GPS) L2C intermediate frequency(IF) signal sampler—SIS100L2C. The acquisition results show that the proposed modified algorithm can acquire the code phase accurately with less calculation and its acquisition performance is better than the single hyper code method.展开更多
Combining the advantages of partial matched filter(PMF) and fast Fourier transform(FFT),an improved fast acquisition method for GPS C/A code is proposed.According to PMF-FFT acquisition architecture,the greater th...Combining the advantages of partial matched filter(PMF) and fast Fourier transform(FFT),an improved fast acquisition method for GPS C/A code is proposed.According to PMF-FFT acquisition architecture,the greater the number of PMF will bring out the more slowly amplitude decreasing of the amplitude-frequency response,the smaller scale of the corresponding PMF,and the larger computation of the FFT.In order to compensate the frequency spectrum attenuation caused by spectrum leakage and fence effect,adding window function to PMF-FFT is presented.Through comparing the influences to the acquisition performance based on rectangular,Hamming,Blackman and Rife-Vincent(Ⅲ) window functions,an improved Rife-Vincent Ⅲ windowing algorithm is recommended for the fast acquisition based on PMF-FFT.展开更多
The contradiction between the sensitivity and the frequency domain searching speed of GPS signal acquisition circuit has been discussed for a long time. The signal integration operation which enhances the sensitivity ...The contradiction between the sensitivity and the frequency domain searching speed of GPS signal acquisition circuit has been discussed for a long time. The signal integration operation which enhances the sensitivity of the system also makes the frequency slots narrower, which affects the speed of the system. In this research a high sensitivity GPS signal acquisition circuit is implemented with a new frequency domain search strategy. The new strategy combines DDS sweep strategy with cyclic shifting sweep strategy which makes the TTFF (time to first fix) reduced evidently. The extra hardware resource cost of the new strategy is acceptable. The speed advantage of the new frequency domain search strategy has been verified by hardware comparison tests.展开更多
文摘We present a design for an adaptive gain phase-locked loop (PLL) that features fast acquisition,low jitter,and wide tuning range. A dual-edge-triggered phase frequency detector (PFD) and a self-regulated voltage controlled oscillator (VCO) are employed in this design to realize the aforementioned properties. Measured results show that the experimental chip, implemented in a standard 0.5μm 5V CMOS logic process, has an acquisition time of about 150ns at 37% frequency variation and an output RMS jitter of 39ps at 640MHz.(dual-edge-triggered phase frequency detector)
基金Project(60904090) supported by the National Natural Science Foundation of China
文摘In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be able to achieve acquisition in a very short time in spite of large Doppler frequencies. However, the traditional methods cannot solve it well. This work describes a new method that uses a differential decoding technique for Doppler mitigation and a batch process of FFT (fast Fourier transform) and IFFT (invert FFT) for the purpose of parallel code phase search by frequency domain correlation. After the code phase is estimated, another FFT process is carried out to search the Doppler frequency. Since both code phase and Doppler frequency domains are searched in parallel, this architecture can provide acquisition fifty times faster than conventional FFT methods. The performance in terms of the probability of detection and false alarm are also analyzed and simulated, showing that a signal-to-noise ratio (SNR) loss of 3 dB is introduced by the differential decoding. The proposed method is an efficient way to shorten the acquisition time with slightly hardware increasing.
基金supported by the Fundamental Research Fund for the Central Universities(NS2013016)
文摘This paper provides a direct and fast acquisition algorithm of civilian long length(CL) codes in the L2 civil(L2C) signal. The proposed algorithm simultaneously reduces the number of fast Fourier transformation(FFT) correlation through hyper code technique and the amount of points in every FFT correlation by using an averaging correlation method. To validate the proposed acquisition performance, the paper applies this algorithm to the real L2C signal collected by the global positioning system(GPS) L2C intermediate frequency(IF) signal sampler—SIS100L2C. The acquisition results show that the proposed modified algorithm can acquire the code phase accurately with less calculation and its acquisition performance is better than the single hyper code method.
基金Supported by the Ministerial Level Foundation(B222006060)
文摘Combining the advantages of partial matched filter(PMF) and fast Fourier transform(FFT),an improved fast acquisition method for GPS C/A code is proposed.According to PMF-FFT acquisition architecture,the greater the number of PMF will bring out the more slowly amplitude decreasing of the amplitude-frequency response,the smaller scale of the corresponding PMF,and the larger computation of the FFT.In order to compensate the frequency spectrum attenuation caused by spectrum leakage and fence effect,adding window function to PMF-FFT is presented.Through comparing the influences to the acquisition performance based on rectangular,Hamming,Blackman and Rife-Vincent(Ⅲ) window functions,an improved Rife-Vincent Ⅲ windowing algorithm is recommended for the fast acquisition based on PMF-FFT.
基金Sponsored by the China Aerospace Science and Technology Corporation and Harbin Institute of Technology Joint Technical Innovation Project( Grant No.CASC-HIT09)
文摘The contradiction between the sensitivity and the frequency domain searching speed of GPS signal acquisition circuit has been discussed for a long time. The signal integration operation which enhances the sensitivity of the system also makes the frequency slots narrower, which affects the speed of the system. In this research a high sensitivity GPS signal acquisition circuit is implemented with a new frequency domain search strategy. The new strategy combines DDS sweep strategy with cyclic shifting sweep strategy which makes the TTFF (time to first fix) reduced evidently. The extra hardware resource cost of the new strategy is acceptable. The speed advantage of the new frequency domain search strategy has been verified by hardware comparison tests.