Mobility support for the next generation IPv6 networks has been one of the recent research issues due to the growing demand for wireless services over internet.In the other hand,3GPP has introduced IP Multimedia Subsy...Mobility support for the next generation IPv6 networks has been one of the recent research issues due to the growing demand for wireless services over internet.In the other hand,3GPP has introduced IP Multimedia Subsystem as the next generation IP based infrastructure for wireless and wired multimedia services.In this paper we present two context transfer mechanisms based on predictive and reactive schemes,to support seamless handover in IMS over Mobile IPv6.Those schemes reduce handover latency by transferring appropriate session information between the old and the new access networks.Moreover,we present two methods for QoS parameters negotiations to preserve service quality along the mobile user movement path.The performances of the proposed mechanisms are evaluated by simulations.展开更多
Recently, the IP connectivity during the Mobile Node (MN) movement between Base Stations (BSs) belonging to different Internet Service Providers (ISPs) is still a key issue to be tackled. In this paper, therefore, we ...Recently, the IP connectivity during the Mobile Node (MN) movement between Base Stations (BSs) belonging to different Internet Service Providers (ISPs) is still a key issue to be tackled. In this paper, therefore, we develop a new scheme to improve the performance of inter-domain fast handover over mobile WiMAX networks. The framework basically relies on the Fast Handover for Mobile IPv6 protocol (FMIPv6) when the Media Independent Information Services (MIIS) as defined in IEEE802.21 standard is applied to enable the Mobile Node in storing the information of the neighboring networks. A Fully Qualified Domain Name (FQDN) is also used to identify the IP address of the previous network operator and the MN during its movements. Since both MIIS and FQDN can support the node mobility between multiple domains, our proposed scheme can also be called P-FMIPv6. The numerical results show that the latency of IP connectivity of this proposed handover can be significantly reduced in addition to less service disruption time during handovers as compared to the existing FMIPv6 when IEEE802.16e network is considered.展开更多
In mobile IPv6 networks, the ping-pong type of movement brings about frequent handovers and thus increases signaling burden. This letter proposes a fast seamless handover scheme where the access router keeps the mobil...In mobile IPv6 networks, the ping-pong type of movement brings about frequent handovers and thus increases signaling burden. This letter proposes a fast seamless handover scheme where the access router keeps the mobile node's old reservation till the offline Count Down Timer (CDT) expires in order to reduce handover signaling and delay while the mobile node returns in a very short period of time. Based upon a pois son mobility model, an simple expression for CDT optimization is given out for the scheme to achieve the best cost performance of resource reservation.展开更多
In the paper,we propose a fuzzy logic controller system to be implemented for smart mobility management in the 5G wireless communication network.Mobility management is considered as a main issue for all-IP mobile netw...In the paper,we propose a fuzzy logic controller system to be implemented for smart mobility management in the 5G wireless communication network.Mobility management is considered as a main issue for all-IP mobile networks future generation.As a network-based mobility management protocol,Internet Engineering Task Force developed the Proxy Mobile IPv6(PMIPv6)in order to support the mobility of IP devices,and many other results were presented to reduce latency handover and the amount of PMIPv6 signaling,but it is not enough for the application needs in realtime.The present paper describes an approach based on the IEEE 802.21 Media Independent Handover(MIH)standard and PMIPv6,so we present a new vertical handover algorithm for anticipating handover process efficiently.Our object is to propose a smart mobility management that contribute in 5G wireless communication system network operating functions.Two proposed dynamic thresholds were successfully made to guaranty process triggering,and a new primitive MIH is proposed for signaling a needed handover to be done.Simulation results demonstrate a significant reduction of the handover delay,packet loss,handover blocking probability and signaling overhead.Simulation results and tests are accomplished.展开更多
This article shows the quality of services in a wireless swarm of drones that form an ad hoc network between them Fly Ad Hoc Networks(FANET).Each drone has the ability to send and receive information(like a router);an...This article shows the quality of services in a wireless swarm of drones that form an ad hoc network between them Fly Ad Hoc Networks(FANET).Each drone has the ability to send and receive information(like a router);and can behave as a hierarchical node whit the intregration of three protocols:Multiprotocol Label Switch(MPLS),Fast Hierarchical AD Hoc Mobile(FHAM)and Internet Protocol version 6(IPv6),in conclusion MPLS+FHAM+IPv6.The metrics analyzed in the FANET are:delay,jitter,throughput,lost and sent packets/received.Testing process was carried out with swarms composed of 10,20,30 and 40 units;In this work,the stage with 40 droneswas analyzed showing registration processes,and sentmessages sequences between different drones that were part of the same swarm.A special analysis about the traffic between drones(end-to-end)was carried out,as well as the possible security flaws in each drone and the current status and future trends in real services.Regarding future trends,in a real environment,we took as a starting point,metrics results obtained in the simulation(positive according to the obtained results).These results gave us a clear vision of how the network will behave in a real environment with the aim to carry out the experiment on a physical level in the near future.This work also shows the experience quality from the service quality metrics obtained through a mathematical model.This quality of experience model will allow us to use it objectively in the agricultural sector,which is a great interest area and is where we are working with drones.Finally in this article we show our advances for a business model applied to the aforementioned agricultural sector,as well as the data analysis and services available to the end customer.These services available to the end customer have been classified into a basic,medium,advanced and plus level.展开更多
The future generation networks or 4G networks constitute of varied technologies converged over the Internet protocol version 6(IPv6) core. The 4G networks offer varied services over different interfaces to the user no...The future generation networks or 4G networks constitute of varied technologies converged over the Internet protocol version 6(IPv6) core. The 4G networks offer varied services over different interfaces to the user nodes. Mobility management in 4G networks is an issue that exists. The handover protocols for mobility management in 4G networks that currently exist, do not consider wireless signal degradation during handover operations. This paper introduces the Noise Resilient Reduced Registration Time Care of Mobile IP(NR RRTC:MIP) protocol for handover management. A handover decision algorithm based on the signal strength measured by the user nodes is considered in the NR RRTC: MIP protocol. A simulation study is discussed in the paper to evaluate the performance of the NR RRTC: MIP protocol. The results obtained from the simulation study prove that the NR RRTC: MIP protocol effectively reduces handover latencies and improves network performance.展开更多
文摘Mobility support for the next generation IPv6 networks has been one of the recent research issues due to the growing demand for wireless services over internet.In the other hand,3GPP has introduced IP Multimedia Subsystem as the next generation IP based infrastructure for wireless and wired multimedia services.In this paper we present two context transfer mechanisms based on predictive and reactive schemes,to support seamless handover in IMS over Mobile IPv6.Those schemes reduce handover latency by transferring appropriate session information between the old and the new access networks.Moreover,we present two methods for QoS parameters negotiations to preserve service quality along the mobile user movement path.The performances of the proposed mechanisms are evaluated by simulations.
文摘Recently, the IP connectivity during the Mobile Node (MN) movement between Base Stations (BSs) belonging to different Internet Service Providers (ISPs) is still a key issue to be tackled. In this paper, therefore, we develop a new scheme to improve the performance of inter-domain fast handover over mobile WiMAX networks. The framework basically relies on the Fast Handover for Mobile IPv6 protocol (FMIPv6) when the Media Independent Information Services (MIIS) as defined in IEEE802.21 standard is applied to enable the Mobile Node in storing the information of the neighboring networks. A Fully Qualified Domain Name (FQDN) is also used to identify the IP address of the previous network operator and the MN during its movements. Since both MIIS and FQDN can support the node mobility between multiple domains, our proposed scheme can also be called P-FMIPv6. The numerical results show that the latency of IP connectivity of this proposed handover can be significantly reduced in addition to less service disruption time during handovers as compared to the existing FMIPv6 when IEEE802.16e network is considered.
基金Supported by the National Natural Science Foundation of China (No.60202005).
文摘In mobile IPv6 networks, the ping-pong type of movement brings about frequent handovers and thus increases signaling burden. This letter proposes a fast seamless handover scheme where the access router keeps the mobile node's old reservation till the offline Count Down Timer (CDT) expires in order to reduce handover signaling and delay while the mobile node returns in a very short period of time. Based upon a pois son mobility model, an simple expression for CDT optimization is given out for the scheme to achieve the best cost performance of resource reservation.
文摘In the paper,we propose a fuzzy logic controller system to be implemented for smart mobility management in the 5G wireless communication network.Mobility management is considered as a main issue for all-IP mobile networks future generation.As a network-based mobility management protocol,Internet Engineering Task Force developed the Proxy Mobile IPv6(PMIPv6)in order to support the mobility of IP devices,and many other results were presented to reduce latency handover and the amount of PMIPv6 signaling,but it is not enough for the application needs in realtime.The present paper describes an approach based on the IEEE 802.21 Media Independent Handover(MIH)standard and PMIPv6,so we present a new vertical handover algorithm for anticipating handover process efficiently.Our object is to propose a smart mobility management that contribute in 5G wireless communication system network operating functions.Two proposed dynamic thresholds were successfully made to guaranty process triggering,and a new primitive MIH is proposed for signaling a needed handover to be done.Simulation results demonstrate a significant reduction of the handover delay,packet loss,handover blocking probability and signaling overhead.Simulation results and tests are accomplished.
基金This research has been funded by Dirección General de Investigaciones of Universidad Santiago de Cali under Call No.01-2021.
文摘This article shows the quality of services in a wireless swarm of drones that form an ad hoc network between them Fly Ad Hoc Networks(FANET).Each drone has the ability to send and receive information(like a router);and can behave as a hierarchical node whit the intregration of three protocols:Multiprotocol Label Switch(MPLS),Fast Hierarchical AD Hoc Mobile(FHAM)and Internet Protocol version 6(IPv6),in conclusion MPLS+FHAM+IPv6.The metrics analyzed in the FANET are:delay,jitter,throughput,lost and sent packets/received.Testing process was carried out with swarms composed of 10,20,30 and 40 units;In this work,the stage with 40 droneswas analyzed showing registration processes,and sentmessages sequences between different drones that were part of the same swarm.A special analysis about the traffic between drones(end-to-end)was carried out,as well as the possible security flaws in each drone and the current status and future trends in real services.Regarding future trends,in a real environment,we took as a starting point,metrics results obtained in the simulation(positive according to the obtained results).These results gave us a clear vision of how the network will behave in a real environment with the aim to carry out the experiment on a physical level in the near future.This work also shows the experience quality from the service quality metrics obtained through a mathematical model.This quality of experience model will allow us to use it objectively in the agricultural sector,which is a great interest area and is where we are working with drones.Finally in this article we show our advances for a business model applied to the aforementioned agricultural sector,as well as the data analysis and services available to the end customer.These services available to the end customer have been classified into a basic,medium,advanced and plus level.
基金the Special Research Fund for the Doctoral Program of Higher Education(No.20050248037)the National Natural Science Foundation of China(No.50779033)
文摘The future generation networks or 4G networks constitute of varied technologies converged over the Internet protocol version 6(IPv6) core. The 4G networks offer varied services over different interfaces to the user nodes. Mobility management in 4G networks is an issue that exists. The handover protocols for mobility management in 4G networks that currently exist, do not consider wireless signal degradation during handover operations. This paper introduces the Noise Resilient Reduced Registration Time Care of Mobile IP(NR RRTC:MIP) protocol for handover management. A handover decision algorithm based on the signal strength measured by the user nodes is considered in the NR RRTC: MIP protocol. A simulation study is discussed in the paper to evaluate the performance of the NR RRTC: MIP protocol. The results obtained from the simulation study prove that the NR RRTC: MIP protocol effectively reduces handover latencies and improves network performance.