The adsorption of fast yellow dye onto dried biomass Padina pavonica was studied in batch experiments. The amount of dye adsorbed (mg/g) was increased with the increase in initial dye concentration. An equilibrium tim...The adsorption of fast yellow dye onto dried biomass Padina pavonica was studied in batch experiments. The amount of dye adsorbed (mg/g) was increased with the increase in initial dye concentration. An equilibrium time of about 90 min was achieved for dye concentrations ranging from 5 to 160 mg/L with maximum removal percentage of 73.2%. Pseudo-first and second order kinetic models have been used to analyze the adsorption data. The pseudo second-order kinetic model adequately described the adsorption data with correlation coefficient between 0.96 and 1.084. Fourier transform infra-red analysis demonstrated the chelating character of the dye molecule to different functionalities groups of the alga. Stirring speed higher than 50 rpm revealed no significant changes in dye adsorption. Temperature ranging from 15℃ to 65℃ showed stability followed by a decrease in adsorption. Scanning electron microscopy of adsorbent particles showed a high surface porosity allowing the free passage of dye molecules.展开更多
An untried,low cost,locally available biosorbent for its anionic dye removal capacity from aqueous solution was investigated.Powder prepared from peanut hull had been used for biosorption of three anionic dyes,amarant...An untried,low cost,locally available biosorbent for its anionic dye removal capacity from aqueous solution was investigated.Powder prepared from peanut hull had been used for biosorption of three anionic dyes,amaranth (Am),sunset yellow (SY) and fast green FCF (FG).The effects of various experimental parameters (e.g.initial pH and dye concentration,sorbent dosage,particle size,ion strength,contact time etc.) were examined and optimal experimental conditions were decided.At initial pH 2.0,three dyes studied could be removed effectively.When the dye concentration was 50 mg·L -1 ,the percentages of dyes sorbed was 95.5% in Am,91.3% in SY and 94.98% in FG,respectively.The ratios of dyes sorbed had neared maximum values in all three dyes when sorbent dose of 5.0 g·L -1 and the sorbent particle size in 80~100 mesh was used.The increasing the ion strength of solution caused the decrease in biosorption percentages of dyes.The equilibrium values arrived at about 36 hour for all three dyes.The isothermal data of biosorption followed the Langmuir and Freundlich models.The biosorption processes conformed the pseudo-first-order rate kinetics.The results indicated that powdered peanut hull was an attractive candidate for removing anionic dyes from dye wastewater.展开更多
文摘The adsorption of fast yellow dye onto dried biomass Padina pavonica was studied in batch experiments. The amount of dye adsorbed (mg/g) was increased with the increase in initial dye concentration. An equilibrium time of about 90 min was achieved for dye concentrations ranging from 5 to 160 mg/L with maximum removal percentage of 73.2%. Pseudo-first and second order kinetic models have been used to analyze the adsorption data. The pseudo second-order kinetic model adequately described the adsorption data with correlation coefficient between 0.96 and 1.084. Fourier transform infra-red analysis demonstrated the chelating character of the dye molecule to different functionalities groups of the alga. Stirring speed higher than 50 rpm revealed no significant changes in dye adsorption. Temperature ranging from 15℃ to 65℃ showed stability followed by a decrease in adsorption. Scanning electron microscopy of adsorbent particles showed a high surface porosity allowing the free passage of dye molecules.
文摘An untried,low cost,locally available biosorbent for its anionic dye removal capacity from aqueous solution was investigated.Powder prepared from peanut hull had been used for biosorption of three anionic dyes,amaranth (Am),sunset yellow (SY) and fast green FCF (FG).The effects of various experimental parameters (e.g.initial pH and dye concentration,sorbent dosage,particle size,ion strength,contact time etc.) were examined and optimal experimental conditions were decided.At initial pH 2.0,three dyes studied could be removed effectively.When the dye concentration was 50 mg·L -1 ,the percentages of dyes sorbed was 95.5% in Am,91.3% in SY and 94.98% in FG,respectively.The ratios of dyes sorbed had neared maximum values in all three dyes when sorbent dose of 5.0 g·L -1 and the sorbent particle size in 80~100 mesh was used.The increasing the ion strength of solution caused the decrease in biosorption percentages of dyes.The equilibrium values arrived at about 36 hour for all three dyes.The isothermal data of biosorption followed the Langmuir and Freundlich models.The biosorption processes conformed the pseudo-first-order rate kinetics.The results indicated that powdered peanut hull was an attractive candidate for removing anionic dyes from dye wastewater.