The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control sy...The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control system is needed to restrain the plasma's vertical displacement. A fast control power supply is needed to excite the active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, the fast control power supply needs to keep on enhancing the fast response and output current. The structure of a new power supply is introduced in this paper. The method of multiple inverters paralleled with the current sharing reactor is presented to meet the need for large current and fast control. According to the design demands of the EAST fast control power supply, the adjuster of the current close loop is applied to the inverter, which can advance its ability to restrain the loop current in low frequency and DC output. The result of the experiment confirms the validity of the proposed scheme and control strategy.展开更多
A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magne...A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.展开更多
EAST (experimental advanced superconducting tokamak) fast control power supply is a high-capacity single-phase AC/DC/AC inverter power supply, which traces the displacement signal of plasma, and excites coils in a v...EAST (experimental advanced superconducting tokamak) fast control power supply is a high-capacity single-phase AC/DC/AC inverter power supply, which traces the displacement signal of plasma, and excites coils in a vacuum vessel to produce a magnetic field that realizes plasma stabilization. To meet the requirements of a large current and fast response, the multi- ple structure of the carrier phase-shift three-level inverter is presented, which realizes parallelled multi-inverters, raises the equivalent switching frequency of the inverters and improves the per- formance of output waves. In this work the design scheme is analyzed, and the output harmonic characteristic of parallel inverters is studied. The simulation and experimental results confirm that the scheme and control strategy is valid. The power supply system can supply a large current, and has a perfect performance on harmonic features as well as the ability of a fast response.展开更多
A bio-inspired suction cup actuated by shape memory alloy(SMA)for miniature wall climbing robots is developed based on studying characteristics of biological suction apparatus.Some fast control strategies are introduc...A bio-inspired suction cup actuated by shape memory alloy(SMA)for miniature wall climbing robots is developed based on studying characteristics of biological suction apparatus.Some fast control strategies are introduced to improve negative pressure response.Theoretic model of the suction cup is built,and simulation and experiments results indicate the effectiveness of the fast control strategies.The largest negative pressure of the suction cup can reach 14 000 Pa,and its generating and cancelling just need 5 s.Research results indicate the suction cup can be used as an adhesion mechanism for miniature wall climbing robots.展开更多
Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is ...Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances.展开更多
Due to attractive features,including high efficiency,low device stress,and ability to boost voltage,a Vienna rectifier is commonly employed as a battery charger in an electric vehicle(EV).However,the 6k±1 harmoni...Due to attractive features,including high efficiency,low device stress,and ability to boost voltage,a Vienna rectifier is commonly employed as a battery charger in an electric vehicle(EV).However,the 6k±1 harmonics in the acside current of the Vienna rectifier deteriorate theTHDof the ac current,thus lowering the power factor.Therefore,the current closed-loop for suppressing 6k±1 harmonics is essential tomeet the desired total harmonic distortion(THD).Fast repetitive control(FRC)is generally adopted;however,the deviation of power grid frequency causes delay link in the six frequency fast repetitive control to become non-integer and the tracking performance to deteriorate.This paper presents the detailed parameter design and calculation of fractional order fast repetitive controller(FOFRC)for the non-integer delay link.The finite polynomial approximates the non-integer delay link through the Lagrange interpolation method.By comparing the frequency characteristics of traditional repetitive control,the effectiveness of the FOFRC strategy is verified.Finally,simulation and experiment validate the steadystate performance and harmonics suppression ability of FOFRC.展开更多
Considering the instability of data transferred existing in high speed network, a new method is proposed for improving the stability using control theory. Under this method, the mathematical model of such a network is...Considering the instability of data transferred existing in high speed network, a new method is proposed for improving the stability using control theory. Under this method, the mathematical model of such a network is established. Stability condition is derived from the mathematical model. Several simulation experiments are performed. The results show that the method can increase the stability of data transferred in terms of the congestion window, queue size, and sending rate of the source.展开更多
This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior mag...This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation.展开更多
To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.Howeve...To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.However,a certain output power suppression amount(OPSA)is generated during frequency support,resulting in the frequency modulation(FM)capability of DFIG not being fully utilised,and the system’s unbalanced power will be increased during speed recovery,resulting in a second frequency drop(SFD)in the system.Firstly,the frequency response characteristics of the power system with DFIG containing FFRC are analysed.Then,based on the analysis of the generation mechanism of OPSA and SFD,a combined wind-storage FM control strategy is proposed to improve the system’s frequency response characteristics.This strategy reduces the effect of OPSA and improves the FM capability of DFIG by designing the fuzzy logic of the coefficients of FFRC according to the system frequency index in the frequency support stage.During the speed recovery stage,the energy storage(ES)active power reference value is calculated according to the change of DFIG rotor speed,and the ES output power is dynamically adjusted to reduce the SFD.Finally,taking the IEEE 39-bus test system as an example,real-time digital simulation verification was conducted based on the RTLAB OP5707 simulation platform.The simulation results showthat theproposedmethodcan improve theFMcapabilityofDFIG,reduce the SFDunder thepremise of guaranteeing the rapid rotor speed recovery,and avoid the overshooting phenomenon so that the systemfrequency can be quickly restored to a stable state.展开更多
We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utiliz...We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.展开更多
基金supported in part by the ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)
文摘The effectiveness of the magnetic confinement of plasma can be improved by elongat- ing the plasma cross-section in tokamak devices. But elongated plasma has vertical displacement instability, so a feedback control system is needed to restrain the plasma's vertical displacement. A fast control power supply is needed to excite the active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, the fast control power supply needs to keep on enhancing the fast response and output current. The structure of a new power supply is introduced in this paper. The method of multiple inverters paralleled with the current sharing reactor is presented to meet the need for large current and fast control. According to the design demands of the EAST fast control power supply, the adjuster of the current close loop is applied to the inverter, which can advance its ability to restrain the loop current in low frequency and DC output. The result of the experiment confirms the validity of the proposed scheme and control strategy.
基金supported by ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)Hefei University of Technology Doctor Research Foundation of China(No.2011HGBZ1292)
文摘A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.
基金supported by Key Project of National Ninth Five-Year Research Program of China[(1998)1303]
文摘EAST (experimental advanced superconducting tokamak) fast control power supply is a high-capacity single-phase AC/DC/AC inverter power supply, which traces the displacement signal of plasma, and excites coils in a vacuum vessel to produce a magnetic field that realizes plasma stabilization. To meet the requirements of a large current and fast response, the multi- ple structure of the carrier phase-shift three-level inverter is presented, which realizes parallelled multi-inverters, raises the equivalent switching frequency of the inverters and improves the per- formance of output waves. In this work the design scheme is analyzed, and the output harmonic characteristic of parallel inverters is studied. The simulation and experimental results confirm that the scheme and control strategy is valid. The power supply system can supply a large current, and has a perfect performance on harmonic features as well as the ability of a fast response.
基金National Science and Technology Foundations of China(No.61075086,No.60875058)the Hi-Tech Research and Development Programof China(863 Program)(No.2009AA04Z221)
文摘A bio-inspired suction cup actuated by shape memory alloy(SMA)for miniature wall climbing robots is developed based on studying characteristics of biological suction apparatus.Some fast control strategies are introduced to improve negative pressure response.Theoretic model of the suction cup is built,and simulation and experiments results indicate the effectiveness of the fast control strategies.The largest negative pressure of the suction cup can reach 14 000 Pa,and its generating and cancelling just need 5 s.Research results indicate the suction cup can be used as an adhesion mechanism for miniature wall climbing robots.
基金the National Natural Science Foundation of China(No.52175100)the Natural Science Foundation of Jiangsu Province(No.BK20201379)+2 种基金the 2020 Industrial Transformation and Upgrading Project of Industry and Information Technology Department of Jiangsu Province(No.JITC-2000AX0676-71)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(No.NY221076)the Scientific and Technological Achievements Transformation Project of Jiangsu Province(No.BA2020004)。
文摘Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances.
基金supported by the National Natural Science Foundation of China(No.11372210 and No.51405343)the Research Fund for the Doctoral Program of Higher Education of China(No.20120032110010)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC28000 and No.15JCQNJC05000)
基金funded by the Xi’an Science and Technology Plan Project,Grant No.2020KJRC001the Xi’an Science and Technology Plan Project,Grant No.21XJZZ0003。
文摘Due to attractive features,including high efficiency,low device stress,and ability to boost voltage,a Vienna rectifier is commonly employed as a battery charger in an electric vehicle(EV).However,the 6k±1 harmonics in the acside current of the Vienna rectifier deteriorate theTHDof the ac current,thus lowering the power factor.Therefore,the current closed-loop for suppressing 6k±1 harmonics is essential tomeet the desired total harmonic distortion(THD).Fast repetitive control(FRC)is generally adopted;however,the deviation of power grid frequency causes delay link in the six frequency fast repetitive control to become non-integer and the tracking performance to deteriorate.This paper presents the detailed parameter design and calculation of fractional order fast repetitive controller(FOFRC)for the non-integer delay link.The finite polynomial approximates the non-integer delay link through the Lagrange interpolation method.By comparing the frequency characteristics of traditional repetitive control,the effectiveness of the FOFRC strategy is verified.Finally,simulation and experiment validate the steadystate performance and harmonics suppression ability of FOFRC.
基金the National Natural Science Foundation of China (50579022 50539140).
文摘Considering the instability of data transferred existing in high speed network, a new method is proposed for improving the stability using control theory. Under this method, the mathematical model of such a network is established. Stability condition is derived from the mathematical model. Several simulation experiments are performed. The results show that the method can increase the stability of data transferred in terms of the congestion window, queue size, and sending rate of the source.
基金supported by the Natural Science Foundation of China under Grant No.61733004the Scientific Research Fund of the Hunan Provincial Education Department under Grand No.18A267.
文摘This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation.
基金funded by Jilin Province Science and Technology Development Plan Projects(20230508157RC)the National Natural Science Foundation of China(U2066208).
文摘To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.However,a certain output power suppression amount(OPSA)is generated during frequency support,resulting in the frequency modulation(FM)capability of DFIG not being fully utilised,and the system’s unbalanced power will be increased during speed recovery,resulting in a second frequency drop(SFD)in the system.Firstly,the frequency response characteristics of the power system with DFIG containing FFRC are analysed.Then,based on the analysis of the generation mechanism of OPSA and SFD,a combined wind-storage FM control strategy is proposed to improve the system’s frequency response characteristics.This strategy reduces the effect of OPSA and improves the FM capability of DFIG by designing the fuzzy logic of the coefficients of FFRC according to the system frequency index in the frequency support stage.During the speed recovery stage,the energy storage(ES)active power reference value is calculated according to the change of DFIG rotor speed,and the ES output power is dynamically adjusted to reduce the SFD.Finally,taking the IEEE 39-bus test system as an example,real-time digital simulation verification was conducted based on the RTLAB OP5707 simulation platform.The simulation results showthat theproposedmethodcan improve theFMcapabilityofDFIG,reduce the SFDunder thepremise of guaranteeing the rapid rotor speed recovery,and avoid the overshooting phenomenon so that the systemfrequency can be quickly restored to a stable state.
基金The NNSF (10371137 and 10201034) of Chinathe Foundation (20030558008) of Doctoral Program of National Higher Education, Guangdong Provincial Natural Science Foundation (1011170) of China and the Advanced Research Foundation of Zhongshan UniversityThe US National Science Foundation (9973427 and 0312113)NSF (10371122) of China and the Chinese Academy of Sciences under the program of "Hundred Distinguished Young Chinese Scientists."
文摘We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.