A detector for fast neutrons based on a 10 × 10 cm^2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined wi...A detector for fast neutrons based on a 10 × 10 cm^2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined with the triple GEM detector cathode and placed inside the detector, in the path of the incident neutrons. The detector is tested by obtaining the energy deposition spectrum with an Am Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou. In the present work we report the results of the tests and compare them with those of simulations. The transport of fast neutrons and their interactions with the different materials in the detector are simulated with the GEANT4 code, to understand the experimental results. The detector displays a clear response to the incident fast neutrons. However, an unexpected disagreement in the energy dependence of the response between the simulated and measured spectra is observed. The neutron sources used in our simulation include deuterium-tritium (DT, 14 MeV), deuterium-deuterium (DD, 2.45 MeV), and Am Be sources. The simulation results also show that among the secondary particles generated by the incident neutron, the main contributions to the total energy deposition are from recoil protons induced in hydrogen-rich HDPE or Kapton (GEM material), and activation photons induced by neutron interaction with Ar atoms. Their contributions account for 90% of the total energy deposition. In addition, the dependence of neutron deposited energy spectrum on the composition of the gas mixture is presented.展开更多
Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proto...Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proton recoil detector was simulated, which consists of hydrogenous converter, i.e., high-density polyethylene(HDPE) for generating recoil protons by means of neutron elastic scattering(n, p) reaction and semiconductor material SiC, for generating a detectable electrical signal upon transport of recoil protons through it. SiC is considered in order to overcome the various factors associated with conventional Si-based devices such as operability in a harsh radiation environment, as often encountered in nuclear facilities. Converter layer thickness is optimized by considering 10~9 neutron events of different monoenergetic neutron sources as well as ^(241)Am-Be neutron spectrum. It is found that the optimized thickness for neutron energy range of 1–10 MeV is ~400 μm. However, the efficiency of fast neutron detection is estimated to be only 0.112%,which is considered very low for meaningful and reliable detection of neutrons. To overcome this problem, a stacked juxtaposition of converter layer between SiC layers has been analyzed in order to achieve high efficiency. It is noted that a tenfold efficiency improvement has been obtained—1.04% for 10 layers stacked configuration vis-à-vis 0.112% of single converter layer detector. Further simulation of the stacked detector with respect to variable converter thickness has been performed to achieve the efficiency as high as ~3.85% with up to 50 stacks.展开更多
A high-efficiency fast neutron detector prototype based on a triple Gas Electron Multiplier(GEM) detector, which, coupled with a novel multi-layered high-density polyethylene(HDPE) as a neutron-to-proton converter...A high-efficiency fast neutron detector prototype based on a triple Gas Electron Multiplier(GEM) detector, which, coupled with a novel multi-layered high-density polyethylene(HDPE) as a neutron-to-proton converter for improving the neutron detection efficiency, is introduced and tested with the Am-Be neutron source in the Institute of Modern Physics(IMP) at Lanzhou in the present work. First, the developed triple GEM detector is tested by measuring its effective gain and energy resolution with55 Fe X-ray source to ensure that it has a good performance.The effective gain and obtained energy resolution is 5.0×104and around 19.2%, respectively. Secondly, the novel multi-layered HDPE converter is coupled with the cathode of the triple GEM detector making it a high-efficiency fast neutron detector. Its effective neutron response is four times higher than that of the traditional single-layered conversion technique when the converter layer number is 38.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11135002,11305232 and 11175076the Foundation of China Spallation Neutron Source:Study and Development of the High-performance and Low-angle Detector
文摘A detector for fast neutrons based on a 10 × 10 cm^2 triple gas electron multiplier (GEM) device is developed and tested. A neutron converter, which is a high density polyethylene (HDPE) layer, is combined with the triple GEM detector cathode and placed inside the detector, in the path of the incident neutrons. The detector is tested by obtaining the energy deposition spectrum with an Am Be neutron source in the Institute of Modern Physics (IMP) at Lanzhou. In the present work we report the results of the tests and compare them with those of simulations. The transport of fast neutrons and their interactions with the different materials in the detector are simulated with the GEANT4 code, to understand the experimental results. The detector displays a clear response to the incident fast neutrons. However, an unexpected disagreement in the energy dependence of the response between the simulated and measured spectra is observed. The neutron sources used in our simulation include deuterium-tritium (DT, 14 MeV), deuterium-deuterium (DD, 2.45 MeV), and Am Be sources. The simulation results also show that among the secondary particles generated by the incident neutron, the main contributions to the total energy deposition are from recoil protons induced in hydrogen-rich HDPE or Kapton (GEM material), and activation photons induced by neutron interaction with Ar atoms. Their contributions account for 90% of the total energy deposition. In addition, the dependence of neutron deposited energy spectrum on the composition of the gas mixture is presented.
基金supported by the grant of a research fellowship from Indira Gandhi Centre for Atomic Research,Department of Atomic Energy,India
文摘Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proton recoil detector was simulated, which consists of hydrogenous converter, i.e., high-density polyethylene(HDPE) for generating recoil protons by means of neutron elastic scattering(n, p) reaction and semiconductor material SiC, for generating a detectable electrical signal upon transport of recoil protons through it. SiC is considered in order to overcome the various factors associated with conventional Si-based devices such as operability in a harsh radiation environment, as often encountered in nuclear facilities. Converter layer thickness is optimized by considering 10~9 neutron events of different monoenergetic neutron sources as well as ^(241)Am-Be neutron spectrum. It is found that the optimized thickness for neutron energy range of 1–10 MeV is ~400 μm. However, the efficiency of fast neutron detection is estimated to be only 0.112%,which is considered very low for meaningful and reliable detection of neutrons. To overcome this problem, a stacked juxtaposition of converter layer between SiC layers has been analyzed in order to achieve high efficiency. It is noted that a tenfold efficiency improvement has been obtained—1.04% for 10 layers stacked configuration vis-à-vis 0.112% of single converter layer detector. Further simulation of the stacked detector with respect to variable converter thickness has been performed to achieve the efficiency as high as ~3.85% with up to 50 stacks.
基金Supported by National Natural Science Foundation of China(11135002,11305232,11175076)
文摘A high-efficiency fast neutron detector prototype based on a triple Gas Electron Multiplier(GEM) detector, which, coupled with a novel multi-layered high-density polyethylene(HDPE) as a neutron-to-proton converter for improving the neutron detection efficiency, is introduced and tested with the Am-Be neutron source in the Institute of Modern Physics(IMP) at Lanzhou in the present work. First, the developed triple GEM detector is tested by measuring its effective gain and energy resolution with55 Fe X-ray source to ensure that it has a good performance.The effective gain and obtained energy resolution is 5.0×104and around 19.2%, respectively. Secondly, the novel multi-layered HDPE converter is coupled with the cathode of the triple GEM detector making it a high-efficiency fast neutron detector. Its effective neutron response is four times higher than that of the traditional single-layered conversion technique when the converter layer number is 38.