期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Fast-SCNN的裂缝图像实时分割算法
被引量:
1
1
作者
张铮
钱勤建
+2 位作者
周嘉政
柯子鹏
胡新宇
《应用光学》
CAS
北大核心
2023年第3期539-547,共9页
裂缝检测是一项关键工程任务,针对现有的主流裂缝语义分割模型参数量大、计算量高、实时性弱等问题,提出一种基于Fast-SCNN(fast segmentation convolution neural network)改进的裂缝图像实时分割算法。首先,该算法在Fast-SCNN基础上...
裂缝检测是一项关键工程任务,针对现有的主流裂缝语义分割模型参数量大、计算量高、实时性弱等问题,提出一种基于Fast-SCNN(fast segmentation convolution neural network)改进的裂缝图像实时分割算法。首先,该算法在Fast-SCNN基础上优化了空间金字塔池化模块SPP(spatial pyramid pooling)存在像素位置信息丢失以及计算量大的不足,提出了一种轻量级的特征金字塔注意力模块;其次,改进了上采样的方式,充分考虑像素之间的关系,提出了一种轻量级的位置自注意力模块用于上采样,以此来提升检测精度;最后,双分支的各自输出通过注意力门突显裂缝相关区域和抑制无关背景。所提算法能够为模型提供更为精确的像素级别的注意力,更加有效识别细小裂缝和提升复杂背景裂缝分割的鲁棒性。实验结果表明:与现有的主流模型和其他轻量级模型相比,该算法进一步平衡了分割精度与检测速度,在裂缝数据集上达到80.31%的平均交并比,F1 score为76.74%,参数量为1.20 M,计算量不足1 G,推理速度达到151 f/s,对裂缝图像实时分割检测任务具有较高的应用价值。
展开更多
关键词
裂缝检测
语义分割
fast-scnn
实时分割
注意力机制
下载PDF
职称材料
基于改进Fast-SCNN的塑瓶气泡缺陷实时分割算法
2
作者
付磊
任德均
+3 位作者
吴华运
郜明
邱吕
胡云起
《计算机应用》
CSCD
北大核心
2020年第6期1824-1829,共6页
在医用塑瓶的瓶身气泡检测时,瓶身气泡位置的任意性、气泡大小的不确定性以及气泡特征与瓶身特征之间的相似性增加了气泡缺陷的检测难度。针对上述气泡缺陷检测难点问题,提出了一种基于改进快速分割卷积神经网络(Fast-SCNN)的实时分割...
在医用塑瓶的瓶身气泡检测时,瓶身气泡位置的任意性、气泡大小的不确定性以及气泡特征与瓶身特征之间的相似性增加了气泡缺陷的检测难度。针对上述气泡缺陷检测难点问题,提出了一种基于改进快速分割卷积神经网络(Fast-SCNN)的实时分割算法。该分割算法的基础框架为Fast-SCNN,而为弥补原有网络分割尺寸的鲁棒性不足,借鉴了SENet的通道间信息的利用与多级跳跃连接的思想,具体为网络进一步下采样提取深层特征,在解码阶段将上采样操作融合SELayer模块,同时增加两次与网络浅层的跳跃连接。设计四组对比实验,在气泡数据集上以平均交并比(MIoU)与算法单张分割时间作为评价指标。实验结果表明,改进Fast-SCNN的综合性能最好,其MIoU为97.08%,其预处理后的医用塑瓶的平均检测时间为24.4 ms,其边界分割准确率较Fast-SCNN提升了2.3%,增强了对微小气泡的分割能力,而且该网络的MIoU相较现有的U-Net提升了0.27%,时间上降低了7.5 ms,综合检测性能远超过全卷积神经网络(FCN-8s)。该算法能够有效地对较小的、边缘不清晰的气泡进行分割,满足对气泡缺陷实时分割检测的工程要求。
展开更多
关键词
语义分割
图像处理
快速分割卷积神经网络(
fast-scnn
)
SENet
缺陷检测
下载PDF
职称材料
题名
基于改进Fast-SCNN的裂缝图像实时分割算法
被引量:
1
1
作者
张铮
钱勤建
周嘉政
柯子鹏
胡新宇
机构
湖北工业大学机械工程学院
出处
《应用光学》
CAS
北大核心
2023年第3期539-547,共9页
基金
国家自然科学基金(61976083)。
文摘
裂缝检测是一项关键工程任务,针对现有的主流裂缝语义分割模型参数量大、计算量高、实时性弱等问题,提出一种基于Fast-SCNN(fast segmentation convolution neural network)改进的裂缝图像实时分割算法。首先,该算法在Fast-SCNN基础上优化了空间金字塔池化模块SPP(spatial pyramid pooling)存在像素位置信息丢失以及计算量大的不足,提出了一种轻量级的特征金字塔注意力模块;其次,改进了上采样的方式,充分考虑像素之间的关系,提出了一种轻量级的位置自注意力模块用于上采样,以此来提升检测精度;最后,双分支的各自输出通过注意力门突显裂缝相关区域和抑制无关背景。所提算法能够为模型提供更为精确的像素级别的注意力,更加有效识别细小裂缝和提升复杂背景裂缝分割的鲁棒性。实验结果表明:与现有的主流模型和其他轻量级模型相比,该算法进一步平衡了分割精度与检测速度,在裂缝数据集上达到80.31%的平均交并比,F1 score为76.74%,参数量为1.20 M,计算量不足1 G,推理速度达到151 f/s,对裂缝图像实时分割检测任务具有较高的应用价值。
关键词
裂缝检测
语义分割
fast-scnn
实时分割
注意力机制
Keywords
crack detection
semantic segmentation
fast-scnn
real-time segmentation
attention mechanism
分类号
TN206 [电子电信—物理电子学]
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于改进Fast-SCNN的塑瓶气泡缺陷实时分割算法
2
作者
付磊
任德均
吴华运
郜明
邱吕
胡云起
机构
四川大学机械工程学院
出处
《计算机应用》
CSCD
北大核心
2020年第6期1824-1829,共6页
文摘
在医用塑瓶的瓶身气泡检测时,瓶身气泡位置的任意性、气泡大小的不确定性以及气泡特征与瓶身特征之间的相似性增加了气泡缺陷的检测难度。针对上述气泡缺陷检测难点问题,提出了一种基于改进快速分割卷积神经网络(Fast-SCNN)的实时分割算法。该分割算法的基础框架为Fast-SCNN,而为弥补原有网络分割尺寸的鲁棒性不足,借鉴了SENet的通道间信息的利用与多级跳跃连接的思想,具体为网络进一步下采样提取深层特征,在解码阶段将上采样操作融合SELayer模块,同时增加两次与网络浅层的跳跃连接。设计四组对比实验,在气泡数据集上以平均交并比(MIoU)与算法单张分割时间作为评价指标。实验结果表明,改进Fast-SCNN的综合性能最好,其MIoU为97.08%,其预处理后的医用塑瓶的平均检测时间为24.4 ms,其边界分割准确率较Fast-SCNN提升了2.3%,增强了对微小气泡的分割能力,而且该网络的MIoU相较现有的U-Net提升了0.27%,时间上降低了7.5 ms,综合检测性能远超过全卷积神经网络(FCN-8s)。该算法能够有效地对较小的、边缘不清晰的气泡进行分割,满足对气泡缺陷实时分割检测的工程要求。
关键词
语义分割
图像处理
快速分割卷积神经网络(
fast-scnn
)
SENet
缺陷检测
Keywords
semantic segmentation
image processing
Fast Segmentation Convolutional Neural Network(
fast-scnn
)
Squeeze-and-Excitation Networks(SENet)
defect detection
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进Fast-SCNN的裂缝图像实时分割算法
张铮
钱勤建
周嘉政
柯子鹏
胡新宇
《应用光学》
CAS
北大核心
2023
1
下载PDF
职称材料
2
基于改进Fast-SCNN的塑瓶气泡缺陷实时分割算法
付磊
任德均
吴华运
郜明
邱吕
胡云起
《计算机应用》
CSCD
北大核心
2020
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部